河南省信阳市息县2022-2023学年八年级下学期4月期中数学试题(含答案)
展开这是一份河南省信阳市息县2022-2023学年八年级下学期4月期中数学试题(含答案),共10页。
2022-2023学年度下期期中学业质量监测
八年级数学试题
注意事项:
1.本试卷共4页,三个大题,23个小题。满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。答在试卷上的答案无效。
一、选择题(每小题3分,共30分)
1.下列各式中一定是最简二次根式的是( )
2.下列计算正确的是( )
3.一直角三角形的两条直角边分别是2和3,则第三边是( )
A.2或3 或
4.如图,在□ABCD中,一定正确的是( )
A. AD=CD B. AC=BD C. AB=CD D. CD=BC
5.如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )
C.1 D.2
6.依据所标数据,下列一定为平行四边形的是( )
7.关于菱形的性质,以下说法不正确的是( )
A.四条边相等 ]B.对角线相等 C.对角线互相垂直 D.是轴对称图形
8.如图在△ABC中,AB=10cm,BC=8cm,AC=6cm,AD是∠BAC的平分线,DE⊥AB,垂足为E,则CD的长度为( )
A.3cm B.4cm C.5cm D.6cm
9.如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为( )
A.45° B.60° C.67.5° D.77.5°
10.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为( )
A. x²-6²=(10-x)² B.( 10+x)²+x²=6²
三、解答题(本题共8个小题,共75分)
16.(9分)化简:
17.(10分) 计算下列各题:
18.(9分)如图,是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.
19.(8分)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).
(1)在图1中作∠ABC的角平分线;
(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.
20.(9分)如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有哪几个直角三角形?请说明理由.
21.(10分)观察下列各式:
(1)通过计算判断以上三个式子是否成立? (填“成立”或“不成立”)
(2)类比上述式子,请再写出一个这样的式子.
(3)这些式子蕴藏着某种规律,请用字母表示这个具有一般性的规律.
(4)请你证明这个规律的正确性.
22.(10分) (1)如图1,平行四边形纸片ABCD中,AD=5, S平行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至 的位置,拼成四边形AEE'D,则四边形AEE'D的形状为 .
A.平行四边形 B.菱形 C.矩形 D.正方形
(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.
求证:四边形AFF'D是菱形.
23.(10分)在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC 到点E,使得CE=DC.
(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;
(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若 AB²=AE²+BD²,用等式表示线段CD与CH的数量关系,并证明.
2022—2023 学年度下期期中学业质量监测 八年级数学参考答案
一、1-5 ABBCD 6-10 DBACC
二、 11.x≥8 12. 6 13.AE=EC 14. (2,0) 15.√5
三、 16. (共 9 分,每答对 1 题得 1 分)(1)21;(2)4√7 ;(3)√3 ;
(4)3√3 ;(5)3√2 ;(6) ;(7) ;(8) ;(9) .
17. (1) − ;
=
=
√6 − √6
√6
………………………3 分
………………………5 分
(2) (√24 − ÷ √3.
=√24 ÷ √3 − ÷ √3
=√24 ÷ 3 − ÷ 3
= √8 − ………………………7 分
=2√2 − √2 ………………………9 分
=√2 ……………………… 10 分
18. 解: 设滑道 AC 的长度为x m,则 AB 的长度为x m ,AE 的长度为(x - 1)m.
在 Rt∆ACE中,∠AEC=90°, 由勾股定理得AE2 + CE2 = AC 2,
即(x − 1)2 + 32 = x 2 ,………………….6 分
解得x = 5. … … … … … … ….8 分
故滑道 AC 的长度为 5m. ………………….9 分
19.答案不唯一,合理即可. (每个图答对得 4 分)
20. 解:图中共有四个直角三角形,分别是 Rt∆ABE 、Rt∆EDF 、Rt∆BCF和
Rt∆BEF. …………………2 分
∵四边形 ABCD 是正方形,
∴∠A=∠C=∠D=90 °
∴∆ABE 、∆EDF 、∆BCF是直角三角形. … … … … … … … .4 分
∵四边形 ABCD 是正方形,
∴AB=AD=CD=BC=4, AE=2, DF=1,
∴DE=2,CF=3
在 Rt∆ABE 、Rt∆EDF 、Rt∆BCF中,
根据勾股定理可得
BE2 =42 + 22 = 20
EF2 =22 + 12 = 5
BF2=42 + 32 = 25,
∴BE2 +EF2= BF2
∴∆BEF是直角三角形 ............... 9 分
21.(1)成立 … … … … … … … .2 分
(2)
√5 = 5 … … … … … … ….4 分
(3)√n + = n(n ≥ 2 且n是正整数)… … … … … … … .7 分
(4)√n + = = == n … … … … … … …. 10 分
22.(1)C … … … … … … ….3 分
(2)∵AD =5 ,S▱ABCD =15,
∴AE =3 .
又∵在图 2 中, EF=4,
∴在 Rt△AEF 中, AF= = =5 , … … … … … … … .6 分
∴AF=AD =5,
又∵AF∥DF′, AF=DF′,
∴四边形 AFF ′D 是平行四边形,
又∵AF=AD,
∴四边形 AFF ′D 是菱形. … … … … … … …. 10 分
23. (1)证明:在△BCD 和△FCE 中,
,
∴△BCD≌△FCE(SAS),
∴∠DBC=∠EFC,
∴BD∥EF,
∵AF⊥EF,
∴BD⊥AF; … … … … … … … .4 分
(2)解: 由题意补全图形如下: … … … … … … … .6 分
CD =CH. … … … … … … … .7 分
证明: 延长 BC 到 F,使 CF=BC,连接 AF,EF,
∵AC⊥BF,BC =CF,
∴AB=AF,
由(1)可知 BD∥EF,BD=EF,
∵AB2=AE2+BD2,
∴AF2=AE2+EF2,
∴∠AEF=90°,
∴AE⊥EF,
∴BD⊥AE,
∴∠DHE =90°,
又∵CD =CE,
∴CH=CD =CE .… … … … … … … . 10 分
相关试卷
这是一份2021-2022学年河南省信阳市息县八年级上学期期中数学试题及答案,共25页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份河南省信阳市息县2022-2023学年八年级下学期期末数学试题(含答案),共9页。试卷主要包含了对于函数,下列结论正确的是,下面的三个问题中都有两个变量等内容,欢迎下载使用。
这是一份河南省信阳市息县2022-2023学年七年级下学期期末数学试题(含答案),共9页。试卷主要包含了如图所示,,,若,则的度数,下列命题中真命题的个数是,如果,那么下列结论错误的是等内容,欢迎下载使用。