第7章 计数原理单元综合能力测试卷-高二数学新教材同步配套教学讲义(苏教版选择性必修第二册)
展开第7章 计数原理单元综合能力测试卷
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2023·江西新余·高二统考期末)11月29日,江西新余仙女湖的渔民们迎来入冬第一个开捕日,仙女湖的有机鱼迎来又一个丰收年.七位渔民分在一个小组,各驾驶一辆渔船依次进湖捕鱼,甲乙渔船要排在一起出行,丙必须在最中间出行,则不同的排法有( )
A.96种 B.120种 C.192种 D.240种
2.(2023·江西抚州·高三金溪一中校考开学考试)二项式的展开式中的常数项为( )
A. B. C. D.
3.(2023春·江西赣州·高三统考阶段练习)的展开式中含项的系数是( )
A.-112 B.112 C.-28 D.28
4.(2023·福建龙岩·高二统考期末)设,且,若能被17整除,则等于( )
A.0 B.1 C.13 D.16
5.(2023·江苏扬州·高三校联考期末)如图,一圆形信号灯分成A,B,C,D四块灯带区域,现有4种不同的颜色供灯带使用,要求在每块灯带里选择1种颜色,且相邻的2块灯带选择不同的颜色,则不同的信号总数为( ).
A.96 B.84 C.60 D.48
6.(2023·江西吉安·高三统考期末)中国共产党第二十次全国代表大会于2022年10月16日在北京召开,10月17日各代表团分组讨论党的二十大报告.某媒体5名记者到甲、乙、丙3个小组进行宣传报道,每名记者只去1个小组,每个小组最多两名记者,若记者不去甲组,则不同的安排方法共有( )
A.15种 B.30种 C.60种 D.90种
7.(2023·陕西西安·统考一模)公元五世纪,数学家祖冲之估计圆周率的范围是:,为纪念祖冲之在圆周率方面的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.甲同学是个数学迷,他在设置手机的数字密码时,打算将圆周率的前6位数字3,1,4,1,5,9进行某种排列得到密码.如果排列时要求两个1不相邻,那么甲同学可以设置的不同密码个数为( )
A.240 B.360 C.480 D.720
8.(2023春·江苏南京·高二校考开学考试)已知,则的值为( )
A. B.0 C.1 D.2
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.(2023春·安徽宿州·高二安徽省泗县第一中学校考开学考试)关于的二项展开式,下列说法正确的是( )
A.二项式系数和为128 B.各项系数和为
C.项的系数为 D.第三项和第四项的系数相等
10.(2023·辽宁营口·高二统考期末)某校的高一和高二年级各10个班级,从中选出五个班级参加活动,下列结论正确的是( )
A.高二六班一定参加的选法有种
B.高一年级恰有2个班级的选法有种
C.高一年级最多有2个班级的选法为种
D.高一年级最多有2个班级的选法为种
11.(2023·全国·高三专题练习)若,则( )
A. B.
C. D.
12.(2023·全国·高三专题练习)如图所示,各小矩形都全等,各条线段均表示道路.某销售公司王经理从单位处出发到达处和处两个市场调查了解销售情况,行走顺序可以是,也可以是,王经理选择了最近路径进行两个市场的调查工作.则王经理可以选择的最近不同路线共有( )
A.31条 B.36条 C.210条 D.315条
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
13.(2023·辽宁葫芦岛·高三统考期末)的展开式中的系数为________(用数字作答).
14.(2023春·天津红桥·高三统考期末)街道上有编号1,2,.3,....10的十盏路灯,为节省用电又能看清路面,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,满足条件的关灯方法有__________种.
15.(2023·江西吉安·高二统考期末)在的展开式中,项的系数为______.
16.(2023·北京·高二北京市十一学校校考期末)把6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每个人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法共有______种.(用数字作答)
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
17.(10分)
(2023·广西桂林·高二统考期末)从6名运动员中选4人参加米接力赛,在下列条件下,各共有多少种不同的排法?(写出计算过程,并用数字作答)
(1)甲、乙两人必须跑中间两棒;
(2)若甲、乙两人都被选且必须跑相邻两棒.
18.(12分)
(2023·高三课时练习)已知在的展开式中,第9项为常数项,求:
(1)n的值;
(2)展开式中的系数;
(3)含x的整数次幂的项的个数.
19.(12分)
(2023·全国·高二专题练习)在的展开式中,求:
(1)二项式系数的和;
(2)各项系数的和;
(3)奇数项的二项式系数和与偶数项的二项式系数和;
(4)奇数项系数和与偶数项系数和;
(5)的奇次项系数和与的偶次项系数和.
20.(12分)
(2023·全国·高二专题练习)现有一些小球和盒子,完成下面的问题.
(1)4个不同的小球放入编号为1,2,3,4的4个盒子中(允许有空盒子),一共有多少种不同的放法?
(2)4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有1个空盒的放法共有多少种?
21.(12分)
(2023·江西吉安·高二统考期末)在二项式的展开式中,前三项的系数依次为M,P,N,且满足.
(1)若直线l:的系数a,b,c()为展开式中所有无理项系数,求不同直线l的条数;
(2)求展开式中系数最大的项.
22.(12分)
(2023·全国·高二专题练习)(1)从等7人中选5人排成一排(请列出算式并计算出结果)
①若三人不全在内,有多少种排法?
②若都在内,且必须相邻,与都不相邻,有多少种排法?
(2)按照下列要求,分别求有多少种不同的方法?(请列出算式并计算出结果)
①6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;
②6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;