第9章 统计单元综合能力测试卷-高二数学新教材同步配套教学讲义(苏教版选择性必修第二册)
展开第9章 统计单元综合能力测试卷
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.为了了解居家学习期间性别因素是否对学生体育锻炼的经常性有影响,某校随机抽取了40名学生进行调查,按照性别和体育锻炼情况整理出如下的列联表:
性别 | 锻炼情况 | 合计 | |
不经常 | 经常 | ||
女生/人 | 14 | 7 | 21 |
男生/人 | 8 | 11 | 19 |
合计/人 | 22 | 18 | 40 |
注:独立性检验中,.
常用的小概率值和相应的临界值如下表:
0.1 | 0.05 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
根据这些数据,给出下列四个结论:
①依据频率稳定于概率的原理,可以认为性别对体育锻炼的经常性有影响;
②依据频率稳定于概率的原理,可以认为性别对体育锻炼的经常性没有影响;
③根据小概率值的独立性检验,可以认为性别对体育锻炼的经常性有影响,这个推断犯错误的概率不超过0.05;
④根据小概率值的独立性检验,没有充分证据推断性别对体育锻炼的经常性有影响,因此可以认为性别对体育锻炼的经常性没有影响.
其中,正确结论的序号是( )A.①③ B.①④ C.②③ D.②④
2.党的二十大报告提出全面推进乡村振兴.为振兴乡村经济,某市一知名电商平台决定为乡村的特色产品开设直播带货专场.该特色产品的热卖黄金时段为2023年2月1至4月1日,为了解直播的效果和关注度,该电商平台统计了已直播的2023年2月1日至2月5日时段的相关数据,这5天的第天到该电商平台专营店购物人数(单位:万人)的数据如下表:
日期 | 2月1日 | 2月2日 | 2月3日 | 2月4日 | 2月5日 |
第x天 | 1 | 2 | 3 | 4 | 5 |
人数y(单位:万人) | 75 | 84 | 93 | 98 | 100 |
依据表中的统计数据,该电商平台直播黄金时间的天数与到该电商平台专营店购物的人数(单位:万人)具有较强的线性相关关系,经计算得,到该电商平台专营店购物人数与直播天数的线性回归方程为.请预测从2023年2月1日起的第38天到该专营店购物的人数(单位:万人)为( )A.312 B.313 C.314 D.315
3.某产品的广告费用与销售额的统计数据如下表:
广告费用(万元) | 4 | 2 | 3 | 5 |
销售额(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为( )A.63.7 B.64.5 C.65.5 D.66.7
4.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
x(月份) | 1 | 2 | 3 | 4 | 5 |
y(万盒) | 5 | 6 | 5 | 6 | 8 |
若x,y线性相关,线性回归方程为,则以下判断正确的是( )A.x增加1个单位长度,则y一定增加0.7个单位长度
B.x减少1个单位长度,则y必减少0.7个单位长度
C.当时,y的预测值为8.1万盒
D.线性回归直线,经过点
5.一种高产新品种水稻单株穗粒数和土壤锌含量有关,现整理并收集了6组试验数据,(单位:粒)与土壤锌含量(单位:)得到样本数据,令,并将绘制成如图所示的散点图.若用方程对与的关系进行拟合,则( )
A. B.
C. D.
6.某中学为调查高一年级学生的选科倾向,随机抽取了300人,其中选考物理的有220人,选考历史的有80人,统计各选科人数如表所示,则下列说法中正确的是( ).
选考类别 | 选择科目 | |||
思想政治 | 地理 | 化学 | 生物 | |
物理类 | 80 | 100 | 145 | 115 |
历史类 | 50 | 45 | 30 | 35 |
参考数据:,其中.
附表:
0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
A.选考物理类的学生中选择政治的比例比选考历史类的学生中选择政治的比例高
B.选考物理类的学生中选择地理的比例比选考历史类的学生中选择地理的比例高
C.参照附表,根据小概率值的独立性检验,我们认为选择生物与选考类别无关
D.参照附表,根据小概率值的独立性检验,我们认为选择生物与选考类别有关
7.已知变量y与x之间具有线性相关关系,根据变量x与y的相关数据,计算得则y关于x的线性回归方程为( )
附:回归方程中的斜率和截距的最小二乘法估计公式分别为
A. B.
C. D.
8.以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到经验回归方程,则的值分别是( )
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列结论中,正确的有( )
A.数据4,1,6,2,9,5,8的第60百分位数为5
B.若随机变量,则
C.已知经验回归方程为,且,则
D.根据分类变量X与Y的成对样本数据,计算得到,依据小概率值的独立性检验,可判断X与Y有关联,此推断犯错误的概率不大于0.001
10.昆明市第三中学在课外活动中新增了攀岩项目,为了解学生对攀岩的喜好和性别是否有关,面向学生开展了一次随机调查,其中参加调查的男、女生人数相同,并绘制如图所示的等高堆积图,则( )
参考公式及数据
其中
a | 0.10 | 0.05 | 0.010 | 0.001 |
xa | 2.706 | 3.841 | 6.635 | 10.828 |
A.参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多
B.参与调查的女生中喜欢攀岩的人数比不喜欢攀岩的人数多
C.若参与调查的男、女生人数均为100,依据的独立性检验,认为对攀岩的喜好和性别有关
D.无论参与调查的男、女生人数为多少,依据的独立性检验,认为对攀岩的喜好和性别有关
11.已知关于变量x,y的4组数据如表所示:
x | 6 | 8 | 10 | 12 |
y | a | 10 | 6 | 4 |
根据表中数据计算得到x,y之间的线性回归方程为,x,y之间的相关系数为r(参考公式:),则( )A. B.变量x,y正相关 C. D.
12.小明在家独自用下表分析高三前5次月考中数学的班级排名y与考试次数x的相关性时,忘记了第二次和第四次月考排名,但小明记得平均排名,于是分别用m=6和m=8得到了两条回归直线方程:,,对应的相关系数分别为、,排名y对应的方差分别为、,则下列结论正确的是( )
x | 1 | 2 | 3 | 4 | 5 |
y | 10 | m | 6 | n | 2 |
(附:,)A. B. C. D.
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
13.由表中三个样本点,利用最小二乘法得到的变量x,y之间的线性回归方程为,则m=__________.
x | 12 | 9 | 14 |
y | 27 | 20 | m |
14.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数a的值为______.
15.为了考察某种药物预防疾病的效果,进行动物试验,得到如下列联表:
药物 | 疾病 | 合计 | |
未患病 | 患病 | ||
服用 | a | 50-a | 50 |
未服用 | 80-a | a-30 | 50 |
合计 | 80 | 20 | 100 |
若在本次考察中得出“在犯错误的概率不超过0.01的前提下认为药物有效”的结论,则a的最小值为___________(其中a≥40且a∈)(参考数据:≈2.58,≈3.29)
参考公式
临界值表
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
16.已知变量,的关系可以用模型拟合,设,其变换后得到一组数据如下:
4 | 6 | 8 | 10 | |
2 | 3 | 5 | 6 |
由上表可得线性回归方程,则______.
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
17.(10分)
为了有针对性地提高学生体育锻炼的积极性,某校需要了解学生是否经常锻炼与性别因素有关,为此随机对该校100名学生进行问卷调查,得到如下列联表.
| 经常锻炼 | 不经常锻炼 | 总计 |
男 | 35 |
|
|
女 |
| 25 |
|
总计 |
|
| 100 |
已知从这100名学生中任选1人,经常锻炼的学生被选中的概率为.
(1)完成上面的列联表;
(2)根据列联表中的数据,判断能否有90%的把握认为该校学生是否经常锻炼与性别因素有关.
附:,其中,.
0.1 | 0.05 | 0.01 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
18.(12分)
为了了解某城市70后和80后市民每周的体育锻炼时长情况,随机抽取了200人进行调查,并按年龄段及周平均体育锻炼时间是否少于7小时,将调查结果整理成列联表,统计得出样本中周平均体有锻炼时间少于7小时的人数占,70后的样本人数占样本总数的,80后每周平均体育最炼时间不少于7小时的样本有60人.(70后指1970年至1979年出生的人构成的群体,80后指1980年至1989年出生的人构成的群体)
时间 年龄段 | 少于7小时 | 不少于7小时 | 合计 |
70后 |
|
|
|
80后 |
| 60 |
|
合计 |
|
| 200 |
(1)请根据已知条件将上述列联表补充完整,并依据小概率值的独立性检验,分析周平均体育锻炼时间长短与年龄段是否有关联;
(2)现从70后的样本中按周平均体育锻炼时间是否少于7小时,用分层抽样的方法抽取6人做进一步访谈,然后从这6人中随机抽取3人进行体检,记抽取的3人中周平均体育锻炼时间不少于7小时的人数为,求的分布列及数学期望.
参考公式及数据:.
0.1 | 0.05 | 0.01 | 0.05 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
19.(12分)
党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022年9月23日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一.据统计该市2017年至2021年农村居民人均可支配收入的数据如下表:
年份 | 2017 | 2018 | 2019 | 2020 | 2021 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
人均可支配收入(单位:万元) |
(1)根据上表统计数据,计算与的相关系数,并判断与是否具有较高的线性相关程度(若,则线性相关程度一般,若则线性相关程度较高,精确到);
(2)市五届人大二次会议政府工作报告提出,2022年农村居民人均可支配收入力争不低于万元,求该市2022年农村居民人均可支配收入相对2021年增长率最小值(用百分比表示).
参考公式和数据:相关系数,.
20.(12分)
某果园种植“糖心苹果”已有十余年,为了提高利润,该果园每年投入一定的资金,对种植、采摘、包装、宣传等环节进行改进.如图是2013年至2022年,该果园每年的投资金额(单位:万元)与年利润增量(单位:万元)的散点图:
该果园为了预测2023年投资金额为20万元时的年利润增量,建立了关于的两个回归模型;
模型①:由最小二乘公式可求得与的线性回归方程:;
模型②:由图中样本点的分布,可以认为样本点集中在曲线:的附近,对投资金额做交换,令,则,且有,,,.
(1)根据所给的统计量,求模型②中关于的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测投资金额为20万元时的年利润增量(结果保留两位小数).
回归模型 | 模型① | 模型② |
回归方程 | ||
102.28 | 36.19 |
附:,;
相关指数.
参考数据:,.
21.(12分)
年月日,由工业和信息化部、安徽省人民政府共同主办的第十七届“中国芯”集成电路产业大会在合肥成功举办.此次大会以“强芯固基以质为本”为主题,旨在培育壮大我国集成电路产业,夯实产业基础、营造良好产业生态.年,全国芯片研发单位相比年增加家,提交芯片数量增加个,均增长超过倍.某芯片研发单位用在“芯片”上研发费用占本单位总研发费用的百分比()如表所示.
年份 | |||||||
年份代码 | |||||||
(1)根据表中的数据,作出相应的折线图;并结合相关数据,计算相关系数,并推断与线性相关程度;(已知:,则认为与线性相关很强;,则认为与线性相关一般;,则认为与线性相关较弱)
(2)求出与的回归直线方程(保留一位小数);
(3)请判断,若年用在“芯片”上研发费用不低于万元,则该单位年芯片研发的总费用预算为万元是否符合研发要求?
附:相关数据:,,,.
相关计算公式:①相关系数;
在回归直线方程中,,.
22.(12分)
移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.右图是2018-2022年移动物联网连接数W与年份代码t的散点图,其中年份2018-2022对应的t分别为1~5.
(1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;
(2)(i)假设变量x与变量Y的n对观测数据为(x1,y1),(x2,y2),…,(xn,yn),两个变量满足一元线性回归模型 (随机误差).请推导:当随机误差平方和Q=取得最小值时,参数b的最小二乘估计.
(ii)令变量,则变量x与变量Y满足一元线性回归模型利用(i)中结论求y关于x的经验回归方程,并预测2024年移动物联网连接数.
附:样本相关系数,,,,