- 特训18 期末历年解答题50道(上海精选归纳)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 9 次下载
- 第14-15章 三角形 平面直角坐标系 知识梳理-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 9 次下载
- 第一次月考卷01-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 6 次下载
- 第一次月考卷02-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 4 次下载
- 期中模拟卷01(测试范围:12.1-14.2)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 10 次下载
第12-13章 实数 相交线 平行线 知识梳理-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用)
展开第12-13章 实数 相交线 平行线 知识梳理
第12章 实数 知识梳理
【知识网络】
【要点梳理】
一、平方根和立方根
类型 项目 | 平方根 | 立方根 |
被开方数 | 非负数 | 任意实数 |
符号表示 | ||
性质 | 一个正数有两个平方根,且互为相反数; 零的平方根为零; 负数没有平方根; | 一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零; |
重要结论 |
二、次方根
如果一个数的次方(是大于1的整数)等于,那么这个数叫做的次方根.当为奇数时,这个数为的奇次方根;当为偶数时,这个数为的偶次方根.
求一个数的次方根的运算叫做开次方,叫做被开方数,叫做根指数.
实数的奇次方根有且只有一个,正数的偶次方根有两个,它们互为相反数;负数的偶次方根不存在.;零的次方根等于零.
三、实数
有理数和无理数统称为实数.
1.实数的分类
要点:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.
(2)无理数分成三类:①开方开不尽的数,如,等;
②有特殊意义的数,如π;
③有特定结构的数,如0.1010010001…
(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.
2.实数与数轴上的点一 一对应.
数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.
3.实数的三个非负性及性质:
在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)任何一个实数的绝对值是非负数,即||≥0;
(2)任何一个实数的平方是非负数,即≥0;
(3)任何非负数的算术平方根是非负数,即 ().
非负数具有以下性质:
(1)非负数有最小值零;
(2)有限个非负数之和仍是非负数;
(3)几个非负数之和等于0,则每个非负数都等于0.
4.实数的运算:
数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.
5.实数的大小的比较:
有理数大小的比较法则在实数范围内仍然成立.
法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;
法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;
法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.
四、近似数及有效数字
1.近似数:完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数.
2.精确度:近似数与准确数的接近程度即近似程度.对近似程度的要求叫做精确度.
要点:精确度有两种形式:①精确到哪一位.②保留几个有效数字.
3.有效数字:从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字,如0.208的有效数字有三个:2,0,8.
五、分数指数幂
,,其中为正整数,.
上面规定中的和叫做分数指数幂,是底数.
整数指数幂和分数指数幂统称为有理数指数幂.
要点:设为有理数,那么
(1).
(2).
(3).
第13章 相交线 平行线 知识梳理
【知识网络】
【要点梳理】
一、相交线
1.对顶角、邻补角
两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:
| 图形 | 顶点 | 边的关系 | 大小关系 |
对顶角 | 有公共顶点 | ∠1的两边与 ∠2的两边互为反向延长线 | 对顶角相等 即∠1=∠2 | |
邻补角 | 有公共顶点 | ∠3与∠4有一条边公共,另一边互为反向延长线. | 邻补角互补即 ∠3+∠4=180° |
要点:
⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.
2.斜线及垂线、点到直线的距离
(1)斜线:如果两条直线的夹角为锐角,那么就说这两条直线互相斜交,其中一条直线叫做另一条直线的斜线.
(2)垂线:如果两条直线的夹角为直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.如图1,记作: AB⊥CD,垂足为O.
要点:
要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.
(3)垂线的性质:
垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.
(4)点到直线的距离:
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P到直线AB的距离是垂线段PO的长.
要点:垂线段PO是点P到直线AB所有线段中最短的一条.
二、同位角、内错角、同旁内角的概念
1. “三线八角”模型
如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.
要点:
⑴两条直线AB,CD与同一条直线EF相交.
⑵“三线八角”中的每个角是由截线与一条被截线相交而成.
2. 同位角、内错角、同旁内角的定义
在“三线八角”中,如上图1,
(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.
(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.
(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.
要点:
(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.
(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.
三、平行线
1.平行线的判定
判定方法1:同位角相等,两直线平行.
判定方法2:内错角相等,两直线平行.
判定方法3:同旁内角互补,两直线平行.
要点:根据平行线的定义和平行公理的推论,平行线的判定方法还有:
(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.
(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).
(3)在同一平面内,垂直于同一直线的两条直线平行.
(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
2.平行线的性质
性质1:两直线平行,同位角相等;
性质2:两直线平行,内错角相等;
性质3:两直线平行,同旁内角互补.
要点:根据平行线的定义和平行公理的推论,平行线的性质还有:
(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.
(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.
3.两条平行线间的距离
如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.
要点:
(1)直线AB∥CD,在直线AB上任取一点G,过点G作CD的垂线段GH,则垂线段GH的长度就是直线AB与CD间的距离.
(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.
(3)如何理解 “垂线段”与 “距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.