所属成套资源:【精品同步】数学同步培优练习七年级下册(知识梳理+含答案)
【精品同步】数学同步培优练习七年级下册第六讲二元一次方程组及其解法和应用.(知识梳理+含答案)
展开
这是一份【精品同步】数学同步培优练习七年级下册第六讲二元一次方程组及其解法和应用.(知识梳理+含答案),共71页。
第六讲 二元一次方程(组)及其解法和应用.
研课本 知考向
1.课程目标要求
授课内容
目标层级
1.二元一次方程(组)的相关概念
2.二元一次方程(组)的解法
3.二元一次方程(组)的实际应用
2.三元一次方程(组)的解法
2.实时考向
本讲内容难度一般,在长沙中考中常以选择题和应用题为主。在月考中,难度中上,一般在选择题和填空题中都有出现,大题喜欢结合不等式组一起考查。
含参问题在近年校考中考查较多,需多注意。
解重点 固根基
基
【模块一】二元一次方程(组)的概念及解法
一、二元一次方程的概念
1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:.
2.二元一次方程的判定:
必须同时满足四个条件:
(1)含有两个未知数——“二元”; (2)未知数项的最高次数为1——“一次”;
(3)方程两边都是整式——整式方程;(4)未知数的系数不能为0.
3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.
【注】任何一个二元一次方程都有无数个解.
二、二元一次方程组的概念和解法
1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.
【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.
(2)方程可以超过两个.
【例】,,等都是二元一次方程组.
2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.
【例】的解是.
3.二元一次方程组解的情况:
一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.
【例】方程组有无数组解,方程组和无解.
4.二元一次方程组的基本解法
(1)代入消元法:
①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如;
②把代入另一个方程中,消去y,得到一个关于x的一元一次方程;
③解这个一元一次方程,求出x的值;
④把求得的x的值代回中,求出y的值,从而得出方程组的解;
⑤把这个方程组的解写成的形式.
(2)加减消元法:
①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;
②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
③解这个一元一次方程,求出一个未知数的值;
④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;
⑤把这个方程组的解写成的形式.
5. 三元一次方程组的基本解法:
①通过消元把三元一次方程组转化为二元一次方程组;
②解二元一次方程组.
6.解方程组的三大解题思想
(1)消元思想;(2)整体思想;(3)换元思想.
题型一 二元一次方程(组)的定义
例1、(2020长郡七下期末)下列方程是二元一次方程的是( )
A. B.
C. D.
演练1、(2020广益七下期中)下列等式:①;②;③;④;⑤,二元一次方程的个数是( )
A. B. C. D.
演练2、(2020长郡七下期中)下列方程中,是二元一次方程的是( )
A. B. C. D.
例2、(2020怡雅七下第一次月考)下列方程组是二元一次方程组的是( )
A. B. C. D.
例3、(2020麓山七下第一次月考)若是关于、的二元一次方程组,则___________.
演练1、(2020雅礼七下期末)若方程是关于,的二元一次方程,则的值为( )
A. B. C. D.
例4、(2020长芙七下第一次月考)已知,方程是二元一次方程,则________.
演练1、(2020中雅七下第一次月考)若是关于,的二元一次方程,则的值是( )
A. B.任何数 C. D.或
题型二 二元一次方程(组)的解的概念
例5、(2020长芙七下第一次月考)下面组数值中,二元一次方程的解是( )
A. B. D. D.
演练1、(2020中雅七下第一次月考)若一个二元一次方程的一个解为,则这个方程可以是( )
A. B. C. D.
演练2、(2020师博七下期中)若是关于、的二元一次方程的解,则_________.
演练3、(2020师博七下期中)写出二元一次方程的所有正整数解:___________.
题型三 二元一次方程(组)的解法
例6、(2019雅礼七下期末)已知二元一次方程,用含的式子表示的形式是__________.
演练1、(2020中雅七下第一次月考)已知二元一次方程,用含的代数式表示,则__________.
演练2、(2020长郡七下期末)已知方程,用的代数式表示为________.
例7、(2020长芙七下第一次月考)已知二元一次方程组,则的值是( )
A. B. C. D.
演练1、(2020雅实七下期中)利用加减消元法解方程组,下列说法正确的是( )
A要消去, B.要消去,
C.要消去, D.要消去,
演练2、(2020青一七下第三次月考)用加减消元法解方程组下列变形正确的是( )
A. B. C. D.
例8、(2019长郡七下期末)解方程组
(1) (2)
演练1、(2020长芙七下第一次月考)解方程组
(1) (2)
演练2、(2020怡雅七下第一次月考)解下列方程组:
(1) (2)
演练3、(2020长郡七下期末)解二元一次方程组
(1) (2)
例9、(2019广益七下期末)已知二元一次方程组,则________.
演练1、(2020立信七下第一次月考)已知方程组的解满足,则的值为________.
演练2、(2020麓山七下第一次月考)关于、的二元一次方程组的解满足,则的值是___________.
演练3、(2020长雅七下期中)若方程组的解满足,则的值为( )
A. B. C. D.
例10、解方程组
(1) (2)
演练1、解方程组
(1)) (2)
【模块二】二元一次方程(组)的实际应用
一、常见的一些等量关系
1.行程问题:路程=速度×时间
2.工程问题:工作量=工作效率×工作时间,各部分工作量之和=总量
3.利润问题:商品利润=商品售价-商品进价,利润率=(利润÷成本)
4.和差倍分问题:增长量=原有量×增长率
5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×存期
2.列二元一次方程组解应用题的一般步骤:
设:用两个字母表示问题中的两个未知数;
列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);
解:解方程组,求出未知数的值;
验:检验求得的值是否正确和符合实际情形;
答:写出答案.
题型四 二元一次方程组一般应用
例11、(2020麓山七下第一次月考)从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走,平路每小时走,下坡每小时走,那么从甲地到乙地需,从乙地到甲地需,甲地到乙地全程是___________.
例12、(2020青一七下第三次月考)学校的篮球数比排球数的倍少,篮球数与排球数的比是,求两种球各有多少个。若设篮球有个,排球有个,则依题意得到的方程组是( )
A. B. C. D.
例13、(2020麓山七下第一次月考)一个两位数,它的个位数字是十位数字的倍,且十位数字与个位数字和的倍,等于这个两位数,这个两位数是___________.
题型五 古文中的二元一次方程组
例14、(2019长郡七下期末)在我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两少7两,每人半斤多半斤;试问多少人分多少银?(注:这里的斤是指市斤,1市斤=10两),设一共有人,两银子,则下列方程组正确的是
A.
B.
C.
D.
演练1、(2020雅礼七下期末)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
译文为:现有一些人共同买一个物品,每人出元,还盈余元;每人出元,则还差元,问共有多少人?这个物品的价格是多少?若设共有人,物品的价格是元,可列二元一次方程组( )
A. B. C. D.
题型六 图形中的二元一次方程组
例15、如图1,将正方形的一角折叠,折痕为,点恰好落在点处,比大.设和的度数分别为和,那么所适合的一个方程组是___________.
图1 图2
演练1、(2020中雅七下第一次月考)如图2,在大长方形中,放入九个相同的小长方形,则图中阴影部分面积(单位:)为__________.
演练2、(2019长郡七下期末)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图2所示的竖式与横式两种无盖的长方形纸箱.若该厂购进正方形纸板1000张,长方形纸板2000张,问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(加工时接缝材料不计)
题型七 二元一次方程组综合实际应用
例16、(2020长郡七下期中)为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买个排球和个实心球需用元,若买个排球和个实心球需用元.
(1)排球、实心球的单价各是多少元?
(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买个排球和个实心球实际共需要花费多少元?
演练1、(2020立信七下第一次月考)新冠病毒自确诊会人传人以来,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利元,进价和售价如表:
品名价格
甲型口罩
乙型口罩
进价(元/袋)
20
30
售价(元/袋)
25
36
(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?
(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利为元,每袋乙种型号的口罩打几折?
演练2、(2020长芙七下第一次月考)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花元购买了黑、白两种颜色的文化衫件,每件文化衫的批发价及手绘后的零售价如表:
批发价(元)
零售价(元)
黑色文化衫
25
45
白色文化衫
20
35
(1)学校购进黑、白文化衫各几件?
(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.
演练3、(2020中雅七下第一次月考)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解辆型汽车、辆型汽车的进价共计万元;辆型汽车、辆型汽车的进价共计万元.
(1)求、两种型号的汽车每辆进价分别为多少万元?
(2)若该公司计划正好用万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;
(3)若该汽车销售公司销售辆型汽车可获利元,销售辆型汽车可获利元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?
勤练习 促掌握
1、(2020长芙七下第一次月考)下列方程组中,是二元一次方程组是( )
A. B. C. D.
2、(2019长郡七下期末)下列方程组中不是二元一次方程组的是
A.
B.
C.
D.
3、(2020怡雅七下第一次月考)加减法解方程组时,若要求消去,则应( )
A. B. C. D.
4、(2020师博七下期中)方程组的解是( )
A. B. C. D.
5、(2020长郡七下期末)已知,且,则的值为( )
A. B. C. D.
6、(2020广益七下期中)我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果个,买苦果个,则下列关于,的二元一次方程组中符合题意的是( )
A.B.C. D.
7、(2020南雅七下期中)某旅店一共个房间,大房间每间住个人,小房间每间住个人,一共个学生刚好住满,设大房间有个,小房间有个,下列方程正确的是( )
A. B. C. B.
8、(2020广益七下期末)已知方程是关于,的二元一次方程,则________.
9、(2020长郡七下期中)已知是二元一次方程的一组解,则___________.
10、(2020雅实七下期中)把方程化成含的代数式表示的形式为_________.
11、(2020青一七下第三次月考)已知关于,的二元一次方程组,则_________.
12、(2020师博七下期中)解下列方程组:
(1); (2)
13、(2020雅实七下期中)解下列二元一次方程组
(1) (2)
14、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
15、(2020怡雅七下第一次月考)去年春季,蔬菜种植场在公顷的大棚地里分别种植了茄子和西红柿,总费用是万元.其中,种植茄子和西红柿每公顷的费用和每公顷获利情况如表:
每公顷费用(万元)
每公顷获利(万元)
茄子
1.7
2.4
西红柿
1.8
2.6
请解答下列问题:
(1)求出茄子和西红柿的种植面积各为多少公顷?
(2)种植场在这一季共获利多少万元?
七年级培优教材答案
第一讲 实数及其简单应用
题型一、求平方根、算术平方根
例1、(1) (2) (3)
例2、
演练1、 演练2、
例3、
演练1、 演练2、
易错题1、 易错题2、 易错题3、
题型二、开平方及相关运算
例4、 (1) (2) (3) (4)或
演练1、 或
题型三、求立方根、开立方及相关运算
例5、
演练1、 演练2、
题型四、平方根和立方根的简单应用
例6、
演练1、
例7、
演练1、 演练2、
例8、
演练1、
题型五、实数的概念与分类
例9、
演练1、 演练2、 演练3、
例10、
演练2、
题型六、实数的计算
例11、 (1) (2)或
演练1、(1) (2)或
例12、
演练1、(1) (2) 演练2、 演练3、
加餐练习、
1. 2. 3. 4. 5. 6.
题型七、实数的估算
例13、
演练1、
例14、
演练1、 演练2、
勤练习 促掌握
1. 2. 3. 4. 5. 6. 7. 8. 或
9. 10. 11. 12. 13. 14. 15.
第二讲 实数的综合应用
题型一、利用实数性质解题
例1、
演练1、 演练2、 演练3、
例2、
例3、
演练1、 演练2、 演练3、
例4、
演练1、 演练2、 演练3、
例5、
演练1、(1) (2)
例6、
演练1、
题型二、实数与化简
例7、
演练1、 演练2、(1) (2)
题型三、实数中其他应用
例8、 ① ② ③ ④
演练1、
例9、
例10、
题型四、实数中的新定义
例11、
演练1、
例12、 (1) (2)
例13、
演练1、 演练2、
例14、
演练1、(1) (2) (3)
勤学习 促掌握
1. 2. 3. 4. 5. 6. 7.
8. (1) (2) 9. 10.
第三讲 实数的综合应用
题型一、平面直角坐标系与点的坐标
例1、
例2、
演练1、 一
例3、
演练1、 演练2、 演练3、
例4、
演练1、 演练2、
例5、
演练1、 演练2、 演练3、
例6、
例7、
题型二、坐标系中的平移
例8、
演练1、 演练2、
例9、
例10、
演练1、
例11、
演练1、 演练2、 演练3、
题型三、坐标系中的对称、位置
例12、
演练1、(1) (2),为任意实数 (3)
例13、
演练1、
题型四、坐标系的面积
例14、 (1) (2) (3)或
例15、 (1),, (2)
(3) 或
演练1、(1),, (2)略
(3)
演练2、 (1),, (2)
勤学习 促掌握
1. 2. 3. 4. 5. 6.
7. 8. 9. ,
10. (1),, (2).
11. (1)略 (2),,
第四讲 坐标系中的规律探究与新定义
题型一 一般规律问题
例题 1. 2. 3.
演练 1. 2.
例题 4.
演练 1.
题型二 正方形中的规律问题
例题 5.
演练 1. 2.
例题 6.
演练 1.
题型三 旋转类规律问题
例题 7.
演练 1.
例题 8.
题型四 坐标系中的新定义
例题 9. 10.(1)①,;②;(2)“识别距离”最小值为,
11. (1);(2);(3)
12. (1);(2);(3),
勤练习,促掌握
1. 2. 3. 4. 5. 6.(1);(2);(3)等腰三角形,理由如下:根据题意可求出
第五讲 坐标系中的综合应用
题型一、坐标与面积
例1、 (1) (2)
(3)设
, 或
例2、①
②
③当在线段上时,当在点左侧时
题型二、坐标与角度、面积的结合
例3、(1)
(2)的平分线和的平分线交于点
设,则
作,则
又
(3)存在某一时刻,使的面积等于长方形面积的,
作 轴于,,
例4、 (1)∵且
∴,
又∵点关于轴对称点为点
∴点的坐标
(2)∵为中点,为中点
∴为重心
∴
又∵
∴
(3)由题意可得:
∴
又∵
∴
又∵
∴
题型三、坐标与平行、面积的结合
例5、 (1)由题意得:,,
∴,,
∴点、、的坐标为:,,
(2)不变,
如图2,过点做
∵,
∴
∴,
∵,∴
∵,∴
∴
∵、分别平分,
∴,
∴
(3)设点
①若点位于轴正半轴上且,过点作轴,则
,,
由题意得:,即,解得.此时点
②若点位于轴负半轴上,则,
由题意:,即,解得,此时
③若点位于轴正半轴上且,此时显然不成立
综上所述:存在或使的面积等于的面积的
例6、 (1)∵
∴,
∴,
∴,
∴
(2)存在点或使,证明如下:
设坐标为,在
∴,
∴坐标为或
(3) (过点作轴平行线即可)
例7、 (1)
(2)
或
(3)设旋转t s后OA与CN平行
①当时
②当时
同理可得
(舍)
③时,如图2
同理可得:
综上所述或
题型四、坐标系中的定值问题
例8、 (1)
(2)
(3) 定值为3
例9、 (1)
又
(2) 当入射角为时,反射光线与平行
(3)
题型五、坐标系中的动态问题分析
例10、 (1)
(2)根据平移性质得: ,
∴ ,解得:AC=6,
(3)∵AC∥x轴,AC=6,∴C的坐标为(6,3),根据平移性质得D(4,7),
,
∴,∵B点横坐标为2,
又∵ ,
∴当P点在M,N点时等式成立,
满足条件的时间t如下:
1) 开始到第一次掉头时, ;
2) 第一次掉头到第二次掉头时, ;
3) 第二次掉头到第三次掉头时, ;
4) 第三次掉头到第四次掉头时, ;
5) 第四次掉头到第五次掉头时,(不符合题意),
∴符合的时间有:0s,18s,27s,33s,37.5s
例11、 (1)
(2) ① ② ③
(3) 或
勤练习 促掌握
1. (1) (2) (3)
2. (1)
(2) 或
(3)
3. (1),
(2)的大小不变
延长、交于点
∵直线与直线垂直相交于
∴
∴
∴
∵、分别是和的角平分线
∴,
∴
∴
∴
∴
∵、分别是和的角平分线
∴
∴
(3)∵与的角平分线相交于
∴,
∴
∵、分别是和的角平分线
∴
在中
∵有一个角是另一个角的倍,故有:
①,,
②,,(舍)
③,,
④,,(舍)
∴为或
4. (1)
(2) (提示:方程解题)
(3) ①当时,;当时,
②
第六讲 二元一次方程(组)及其解法和应用
题型一 二元一次方程(组)的定义
例题 1.
演练 1. 2.
例题 2. 3.
演练 1.
例题 4.
演练 1.
题型二 二元一次方程(组)的解的概念
例题 5.
演练 1. 2. 3.
题型三 二元一次方程(组)的解法
例题 7.
演练 1. 2.
例题 8.
演练 1. 2.
例题 9.(1);(2)
演练 1.(1);(2) 2.(1);(2)
3.(1);(2)
例题 10.
演练 1. 2. 3.
例题 11.(1);(2)
演练 1.(1);(2)
题型四 二元一次方程组一般应用
例题 12. 13. 14.
题型五 古文中的二元一次方程组
例题 15.
演练 1.
题型六 图形中的二元一次方程组
例题 16.
演练 1. 2.设加工竖式纸盒个,横式纸盒个。依题意,得
解得
题型七 二元一次方程组综合应用
例题 17.(1)设排球单价元,实心球单价元。依题意,得解得;(2)(元)
演练 1.(1)设购进甲型口罩个,乙型口罩个。依题意,得
解得;(2)设每袋乙型口罩打折。,,四折。
2.(1)购进黑色文化衫件,白色文化衫件。依题意,得解得;
(2)(元)
3.(1)设型车进价为元,型车进价为元。依题意,得解得;
(2)方案①型车:2辆,型车:15辆;方案②型车:4辆,型车:10辆;
方案③型车:6辆,型车:5辆。(3)方案①利润最大,最大利润是元。
勤练习,促掌握
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.(1);(2) 13.(1);(2)
14.设长方形地砖的长为,宽为。依题意,得解得。
15.(1)设茄子的种植面积为公顷,西红柿的种植面积为公顷。依题意,得解得;(2)(万元)
第七讲 含参二元一次方程(组)的解法
题型一、特殊方程组的解法
例1、
演练1、
例2、 、、
演练1、
例3、 、、
演练1、 、、
演练2、 (1) (2)、、、
例4、
演练1、
例5、
题型二、已知解求参数
例6、
演练1、 演练2、
题型三、已知解的关系求参数
例7、
演练1、 演练2、 演练3、 演练4、略
题型四、同解问题与错解问题
例8、
演练1、
例9、
演练1、(1)、 (2)、
题型五、整数解问题
例10、
例11、 (1)、 (2)
题型六、二元一次方程组中的新定义
例12、 (1) (2)
(3) ①当,时,不存在解坐标
②当,时,存在无数个解坐标
演练1、(1) (2) (3)
勤练习 促掌握
1. 2. 3.
4. (1) (2)
5. 6. 、、原式
7. (1)①不是②的“中雅方程组”
(2)或或
(3)
第八讲 一元一次不等式与不等式组
题型一、不等式的概念和性质
例1、
例2、
演练1、 演练2、 演练3、 演练4、
题型二、一元一次不等式的概念和解法
例3、
例4、
演练1、
例13、
演练1、
例5、
演练1、
例6、
例7、
演练1、 演练2、
例8、
题型三、一元一次不等式组的概念和解法
例9、 (1) (2)
演练1、 演练2、 演练3、
例10、
演练1、 演练2、 演练3、 整数解为、、
例11、
例12、
演练1、
勤练习 促掌握
1. 2. 3. 4. 5. 6.
7. 8. 9.
10. (1) (2) 11.
12. (1) (2) 13. (1) (2)
14. 非整数解的和为 15.
第九讲 一元一次不等式组的实际应用
题型一、实际应用
例1、
演练1、(1)奖品每件元,奖品每件元
(2)奖品最多购买件
题型二、方案选择
例2、 (1)甲种客车载客量为人,乙种客车载客量为人
(2)两种租车方案①甲车辆,乙车辆②甲车辆,乙车辆,第①种方案最省钱
演练1、 (1)老师有人,学生有人;
(2)辆
(3)种,元
例3、 (1)大型渣土车每次运土方吨,小型渣土车每次运土方吨
(2) ①大型渣土车辆,小型渣土车辆,总费用为元
②大型渣土车辆,小型渣土车辆,总费用为元
③大型渣土车辆,小型渣土车辆,总费用为元
④大型渣土车辆,小型渣土车辆,总费用为元
最少需要花费元。
演练1、(1)类货车每辆补贴油费元,类货车每辆补贴油费元
(2)最少为元。
演练2、(1)甲货车每次满载能运输吨物资,乙货车每次满载能运输吨物资
(2)安排甲货车辆,乙货车辆最节省费用,最少为元
例4、 (1)型号的扫地车每周可以处理吨,型号的扫地车每周可以处理吨。
(2)一共有三种方案:
①购买型扫地车辆,型扫地车辆
②购买型扫地车辆,型扫地车辆
③购买型扫地车辆,型扫地车辆
方案①所需资金最少,最少为万元。
例5、 (1)改造个甲种型号大棚需要万元,改造个乙种型号大棚需要万元
(2)一共有三种方案:
①改造个甲种型号大棚,个乙种型号大棚
②改造个甲种型号大棚,个乙种型号大棚
③改造个甲种型号大棚,个乙种型号大棚
方案③所需资金最少,最少为万元。
例6、 (1)甲种笔每支元,乙种笔每支元
(2)共有种进货方案。
演练1、(1)甲种文具每件元,乙种文具每件元
(2)一共有三种方案:
①购买甲种文具件,乙种文具件
②购买甲种文具件,乙种文具件
③购买甲种文具件,乙种文具件
演练2、(1)每件甲产品的成本价为元,每件乙产品的成本价为元
(2)一共有三种方案:
①购进件甲产品,件乙产品
②购进件甲产品,件乙产品
③购进件甲产品,件乙产品
方案③利润最大,最大利润为万元。
例7、 (1)每本数学文化的价格为元,每本文学名著的价格为元
(2)一共有三种方案:
①购进数学文化本,文学名著本
②购进数学文化本,文学名著本
③购进数学文化本,文学名著本
演练1、(1)甲种奖品的单价为元,乙种奖品的单价为元
(2)一共有三种方案:
①购买甲种奖品个,乙种奖品个
②购买甲种奖品个,乙种奖品个
③购买甲种奖品个,乙种奖品个
方案①最省钱
例8、 (1)购买种树每颗需要元,购买种树每颗需要元
(2)一共有三种方案:
①购买种树棵,购买种树棵
②购买种树棵,购买种树棵
③购买种树棵,购买种树棵
演练1、(1)购买种树苗每颗需要元,购买种树苗每颗需要元
(2)一共有三种方案:
①购进种树苗棵,购进种树苗棵
②购进种树苗棵,购进种树苗棵
③购进种树苗棵,购进种树苗棵
方案①最省钱,最少工钱为元
例9、 (1) (2) (3),为或
例10、 (1)①③ (2) (3)
勤练习 促掌握
1. (1)奖品的单价为元,shshan商品的单价为元
(2)至少购买zh种商品个
2. (1)一件文化衫元,一套明信片元
(2)购买文化衫件,购买明信片套
3. (1)帐篷有个,食品包有个
(2)方案一:安排辆乙种货车;方案二:安排辆甲种货车,辆乙种货车;方案三:安排辆甲种货车,辆乙种货车;方案四:安排辆甲种货车,辆乙种货车;方案五:安排辆甲种货车,辆乙种货车;
(3)选用方案运费最少,最少是元。
4. (1)甲商品件,乙商品件
(2)乙商品最低售价为每件元
第十讲 不等式组的综合应用
题型一、已知范围求解
例1、
演练1、
演练2、 演练3、
演练4、 (1) (2) (3) 为
演练5、(1) (2) (3)
题型二、整数解问题
例2、
例3、
演练1、 演练2、
题型三、不等式中的新定义
例4、 (1)① ② (2) (3) (4)或
演练1、(1) (2) (3)或
演练2、(1)① ② (2) (3)或
例5、 (1) (2)① ② ③
例6、 (1)① ② (2)或 (3)
例7、 (1) (2) (3)
例8、 (1) (2)或 (3)
例9、 (1)②是 (2)或 (3)
例10、 (1) 是 (2) (3)
例11、 (1)存在“雅含”关系,是的“子式”
(2) (3)
勤练习 促掌握
1. 2. 3. 4.
5. (1) (2) 6.(1) (2)
7.(1) (2) (3)或
8. (1) (2) (3)
第十一讲 调查统计和直方图
题型一、统计相关的概念
例1、 每名考生的数学成绩
演练1、
例2、
例3、
演练1、 演练2、 演练3、③
例4、
例5、
例6、
演练1、 演练2、 演练3、
例7、
题型二、数据的描述
例8、
演练1、 演练2、
例9、 (1)人 (2) (3) 名
演练1、(1)名 (2) (3)名
演练2、(1)名 (2) (3)名
演练3、(1)踢毽子人数为名 (2) (3)人
演练4、(1) (2)略 (3)万人
演练5、(1)吨 (2) (3)吨
勤练习 促掌握
1. 2. 3.
4. (1)名 (2) (3)万户
5. (1) (2)略 (3)名
6.(1), (2)略 (3)人
第十二讲 三角形及其简单应用
题型一、三角形的稳定性
例1、
演练1、
例2、
题型二、三角形的边
例3、
演练1、 演练2、 演练3、 演练4、
例4、
演练1、 演练2、
例5、
演练1、 演练2、 演练3、 演练4、
题型三、三角形的角
例6、
例7、
演练1、 演练2、
例8、
例9、
演练1、 八边形 演练2、
例10、
演练1、 十二 演练2、 演练3、
例11、
例12、 (1) (2)
演练1、 (1) (2)
题型四、两大模型的应用
例13、 (1) (2) (3)
例14、 (1)在和中
(2) 由(1)得
例15、 (1)
(2)
例16、 (1)、、
(2)
(3)
例17、
演练1、 演练2、
勤练习 促掌握
1. 2. 3. 4. 5. 6.
7. 8.三角形得稳定性 9. 10.
11. 12. 13.(1) (2)
14.
15.(1)
(2)
(3)
第十三讲 全等三角形
题型一 全等三角形的性质
例题 1.
演练 1. 2.
例题 2. 3.
演练 1.
例题 4.
演练 1.(1)先求证即可证明;(2)由(1)可得,所以
例题 5.
演练 1.(1)∵∴;(2)∵是等腰直角三角形,∴垂直平分
2.(1)∵∴;(2)由(1)可知∴是等腰三角形,
例题 6.(1)∵∴;(2)设点到的距离为,,
演练 1.(1)∵∴;(2)
例题 7.(1)∵∴;(2),∵∴,
演练 1.(1)∵平分,∴
又,
∴,
∵,度,∴度
又度,∴度,度
(2)由题知,∴
∵度,∴,∴度,∴度
又平分,∴
又,∴,∴
2. (1)∵∴;(2)且,
由(1)可知,;
(3) .
例题 8.①②③ 9. 10.
11.
演练 1.(1)1;(2)过点作,∵∴,∴
2.方法一:过点作,∵∴,
方法二:过点作,过点作,∵∴,∴,
方法三:过点作交的延长线于点,∴,
例题 12.延长至点,使,∵
∴,在中,﹤,﹥
∴﹤﹤
演练 1. 2.②③④
例题 13.截长:
补短:延长至点使,∵∴,∵,,∴,
演练 1.延长到点,使,连接
例题 14.
15.
16. ③⑤⑥
勤练习,促掌握
1. 2. 3. 4. 5. 6.(1)由题可知,所以;(2)
7.(1);(2);(3)当,当。
8.
9.【证明】∵
∴,(两直线平行,内错角相等)
∵
∴
又∵
∴
∴
∴,(等式的性质)
∴
10.【证明】(1)由题意可知,
∴,
又
在和中
,,
∴,∴
∵,
∴,∴,即
(2)∵,∴ ①
∵,∴
∵,
∴ ②
∴由①、②得:,
11.
12.
13.
第十三讲 全等三角形中的模型
题型一 一线三垂直
例题 1.
2.(1)∵,,,∴,;(2)连接,,∴,∵,∴
3.过点,分别作,先求证可知;再求证可知;∴,∴,是的中线
4.(1)①,;②,求证;
(2)
题型二 角平分线模型
例题 5.
6.
7.
演练 1.
2. 3. 4. 5.(1);(2);
(3)在上截取,连
在和中
∴
∴,
又,
∴
∴
∴
题型三 手拉手模型
例题 8.
演练 1.①②③④
例题 9.
10.
11.(1)∵∴,
(2)∵∴,
题型四 半角模型
例题 12.
13.
演练 1.(1)①;②相等,;(2)①
2. (1);(2)
勤练习,促掌握
1.
2.
3.【解析】(1)证明:∵,
∴
在和中
∴
∴
则,,
∴平分
(2)由(1)知,又
∴
4.
5.
6. (1);(2),求证
7.
8.
第十四讲 全等三角形综合
题型一 全等中的新定义
例题1.(1)∵四边形是互补等对边四边形
∴
在和中
∴
(2)∵四边形是互补等对边四边形
∴
又由(1)
∴
∴
∵
∴
∴
(3)证明:如图③所示:过点、分别作的延长线与的垂线,垂足分别为、
∵四边形是互补等对边四边形,
∴,
又
∴
又∵,
∴
在和中
∴
∴
在和中
∴
∴
∵
∴
∴
∵
∴
∵,
∵
例题2.
例题3.
题型二 全等三角形中的大综合
例题4.(1)证明:如图,设
则,
在中,∵
∴
∴
∴
∴平分
(2)证明:如图,过点作于点,过点作交的延长线于点
∵
∴
∴,
∴
在和中,
∴
∴
在和中,
∴
∴
(3)解:如图,连接
在和中
∴
∴
∵
∴
∴
∵
∴
∵
∴
∴
例题5.
例题6.
例题7.(1)、、
(2)∵,;又
∴或
当在线段上时,如图①.连接、,则
∵
∴,.又为中点
∴,且
又
∴
又
∴
∴,
∵
∴
即轴
∴.
当在线段的延长线上时,如备用图
∴
由①得,
∴
又
∴
∴,
∵
∴
即轴
∴
综上所述:点的坐标为或
(3)设,.过点作直线轴.
∵
∴
又,
∴
∴,且
∵
∴
∴轴
∴.
∴当从点沿轴负方向运动时,点从点沿直线向下运动
∵为中点
∴
又
∴
∴
∴
∵
∴,且
∴
∴
∴
∴点从运动至.路径长为
例题8.
勤练习,促掌握
1.①③④
2.(1)证明:证明即可
(2)解:①当时,点在线段上,点在线段上
,
∴
∴(不合题意,舍去)
②当时,点在线段上,点在线段上
,
∴
∴
综上,
综上所述当时,与全等
(3)解:∵
∴
∵
∴
∵
∴
∴
∵,
∴
3.
4.
(3)