所属成套资源:【精品同步】数学同步培优练习七年级下册(知识梳理+含答案)
【精品同步】数学同步培优练习七年级下册第九讲 一元一次不等式组的实际应用(知识梳理+含答案)
展开
这是一份【精品同步】数学同步培优练习七年级下册第九讲 一元一次不等式组的实际应用(知识梳理+含答案),共68页。
第九讲 一元一次不等式组的实际应用
研课本 知考向
1.课程目标要求
授课内容
目标层级
1.一元一次不等式组的实际应用
2.不等式组与二元一次方程组结合的实际应用
2.实时考向
本讲内容难度中等,在中考中常以简单的选择题和填空题为主,如果出大题一般在第二个大题,考查解不等式及其解集在数轴上的表示。在月考中,常结合二元一次方程(组)出实际应用题或新定义题型(难度大)。
解重点 固根基
基
题型一 实际应用
例1、(2020湘培七下期中)八年级某班级部分同学去植树,若每人平均植树棵,还剩棵,若每人平均植树棵,则有名同学植树的棵数不到棵.若设同学人数为人,下列各项能准确的求出同学人数与种植的树林的数量的是( )
A. B.
C. D.
演练1、(2020广益七下期中)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买、两种奖品以鼓励抢答者.如果购买种件,种件,共需元;如果购买种件,种件,也恰好共需要元.
(1)、两种奖品每件各多少元?
(2)现要购买、两种奖品共件,总费用不超过元,那么种奖品最多购买多少件?
题型二 方案选择
例2、(2020长郡七下期中)有甲、乙两种客车,辆甲种客车与辆乙种客车的总载客量为255人,辆甲种客车与辆乙种客车的总载客量为150人.
(1)请问辆甲种客车与辆乙种客车的载客量分别为多少人?
(2)某学校组织460名师生集体外出活动,拟租用甲、乙两种客车共辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为元,每辆乙种客车的租金为元,且总租车费用不超过元,请问有哪种租车方案?并给出最省钱的租车方案.
演练1、(2020师博七下期中)为拓展学生视野,促进书本知识与生活实践的深度融合,长沙市某中学组织七年级全体学生开展研学活动.在此次活动中,若每位老师带队名学生,则还剩名学生没老师带:若每位老师带队名学生,就有一位老师少带名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
甲型客车
乙型客车
载客量(人/辆)
35
30
租金(元/辆)
400
320
学校计划此次研学活动的租金总费用不超过元,为安全起见,每辆客车上至少要有名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有名老师,求租车总辆数;
(3)学校共有几种租车方案?最少租车费用是多少?
例3、(2019长郡七下期末)某运输公司派出大小两种型号共20辆渣土运输车运输土方.已知一辆大型渣土运输车和两辆小型渣土运输车每次共运20吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.并且一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次.
(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?
(2)若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有哪几种派出方案?最少需要花费多少元?
演练1、(2020广益七下期末)疫情期间,长沙各界爱心人士共捐赠了吨物资支授武汉抗击新冠肺炎,准备安排、两种类型的货车把这批物资从长沙快速送到武汉,若安排型货车辆、型货车辆,一共需补贴油费元;若安排型货车辆、型货车辆,一共需补贴油费元.
(1)从长沙到武汉,、两种类型货车每辆各补贴油费多少元?
(2)型货车每辆可装吨物资,型货车每辆可装吨物资,若安排的型货车的数量是型货车的倍还多辆,且型车最多可安排辆.运送这批物资共有哪些安排,其中补贴的总油费最少是多少元?
演练2、(2020师博七下期末)一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手,某公司用甲,乙两种货车向武汉运送爱心物资.两次满载的运输情况如表:
甲种货车辆数
乙种货车辆数
合计运物资吨数
第一次
3
4
31
第二次
2
6
34
(1)求甲、乙两种货车每次满载分别能运输多少吨物资;
(2)由于疫情的持续,该公司安排甲乙货车共辆进行第三次物资的运送,运送的物资不少于吨,其中每辆甲车一次运送花费元,每辆乙车一次运送花费元,请问该公司应如何安排车辆最节省费用?
例4、(2020广益七下期中)长沙市环保局决定购买、两种型号的扫地车共辆,对城区所有公路地面进行清扫.已知辆型扫地车和辆型扫地车每周可以处理地面垃圾吨,辆型扫地车和辆型扫地车每周可以处理垃圾吨.
(1)求、两种型号的扫地车每辆每周分别可以处理垃圾多少吨?
(2)已知型扫地车每辆价格为万元,型扫地车每辆价格为万元,要想使环保局购买扫地车的资金不超过万元,但每周处理垃圾的量又不低于吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?
例5、(2020雅实七下期中)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种大断进行改造,根据预算,改造个甲种型号的大棚比个乙种型号大棚多需资金万元,改造个甲种型号的大棚和个乙种型号的大棚共需资金万元.
(1)改造个甲种型号大棚和个乙种型号大棚各需要多少万元?
(2)已知改造个甲种型号大棚的时间是天,改造个乙种型号大棚的时间是天,该基地计划改造甲、乙两种型号大棚共个,改造资金不超过万元,要求改造时间不超过天,请问有几种改造方案?那种方案基地投入资金最少,最少是多少?
例6、(2019青一七下期末)益群文具店准备购进甲,乙两种笔,若购进甲种笔100支,乙种笔50支,需要1000元,若购进甲种笔50支,乙种笔30支,需要550元.
(1)求购进甲,乙两种笔每支各需多少元?
(2)若该文具店准备拿出一笔资金购进这两种笔,考虑顾客需求,要求购进甲种笔的数量不少于乙种笔数量的6倍,且不超过乙种笔数量的8倍,共用去了1000元,那么该文具店共有几种进货方案?
演练1、(2020青一七下期末)今年月,国务院总理李克强表示:“地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,是中国的生机”,一时间,地摊兴起.小王决定采购甲、乙两种文具到学校附近开摊经营,若采购甲种文具件,乙种文具件,需要元;若采购甲种文具件,乙种文具件,需要元.
(1)求甲、乙两种文具每件各多少元?
(2)小王想采购两种文具共件,考虑到市场需求和资金周转,用于采购这件文具的资金多于元,但不超过元,那么小王共有哪几种进货方案?请列举出来.
演练2、(2020雅礼七下期末)某商店从工厂购进甲、乙两种产品进行销售,购进件甲产品和件乙产品需要成本元,购进件甲产品和件乙产品需要成本元.销售时,每件甲产品售价为元,每件乙产品售价为元.
(1)分别求每件甲产品和每件乙产品的成本价;
(2)若商店从工厂购进甲、乙两种产品共件,购进时总成本不超过元,且全部销售完以后利润不低于元,请问有哪几种购进方案?哪种方案的利润最大?最大利润是多少?
例7、(2019雅礼七下期末)为开展“校园读书活动”,雅礼中学读书会计划采购数学文化和文学名著两类书籍共100本。经了解,购买20本数学文化和50本文学名著共需1700元,30本数学文化比30本文学名著贵450元。
(注:所采购的同类书籍价格都一样)
(1)求每本数学文化和文学名著的价格;
(2)若校园读书会要求购买数学文化本数不少于文学名著,且总费用不超过2780元,请求出所有符合条件的购书方案。
演练1、(2020长郡七下期末)(请列方程或不等式解决问题)某校七年级(6)班对半学期考试成绩优秀的学生进行奖励,颁发奖品,班主任安排生活委员到某文具店购买甲、乙两种奖品,若买甲种奖品个,乙种奖品个,共用元,买甲种奖品个比买乙种奖品个少花元.
(1)求甲、乙两种奖品的单价各是多少元;
(2)因奖品数量的需要和班费的限制,现要求本次购买甲种奖品的数量是乙种奖品的数量的倍还少个,而且购买这两种奖品的总金额只能在元到元之间(包括元和元),请问有几种购买方案?
例8、(2020青一七下期中)开福区在城市绿化工程中,决定购买,两种树对某路段进行绿化改造,若购买种树棵,种树棵,需要元;购买种树棵,种树棵,需要元.
(1)求购买,两种树每棵各需多少元?
(2)考虑到绿化效果,购进种树不能少于棵,且用于购买这两种树的资金不低于元.若购进这两种树共棵,问有哪几种购买方案?
演练1、(2020中雅七下第三次月考)某市在创建文明城市过程中,决定购买,两种树苗对某路段道路进行绿化改造,已知购买种树苗棵,种树苗棵,需要元:若购买种树苗棵,种树苗棵,则需要元.
(1)求购买,两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进种树苗不能少于棵,且用于购买这两种树的资金不能超过元,若购进这两种树苗共棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵种树苗可获工钱元,种好一棵种树苗可获工钱元,在第(2)问的各种购买方案中,种好这棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
例9、(2020南雅七下期中)定义新运算:,且,.
(1)求,的值;
(2)若,求的取值范围;
(3)图中的数轴上墨迹恰好遮住了关于的不等式的所有整数,求整数的值.
例10、(2020明德七下期中)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.
(1)在方程①,②,③中,写出是不等式组的相伴方程的序号__________;
(2)写出不等式组的一个相伴方程,使得它的根是整数:__________;
(3)若方程;都是关于的不等式组的相伴方程,求的取值范围.
勤练习 促掌握
1、(2020师博七下期中)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买个奖品和个奖品共需元;购买个奖品和个奖品共需元.
(1)求,两种奖品的单价;
(2)学校准备购买,两种奖品共个,且奖品的数量不少于奖品数量的,至少购买种奖品多少个?
2、(2020南雅七下期中)南雅中学小卖部推出了新款的校园文化衫和校园风景明信片.小南购买件文化衫和套明信片花了元,小雅购买件文化衫和套明信片花了元.
(1)一件文化衫和一套明信片各多少元?
(2)学校规定,每位同学每天在小卖部消费不能超过元,小美购买文化衫和明信片两种商品共件,且文化衫的件数大于明信片的套数,请问她购买文化衫多少件?明信片多少套?
3、(2020中雅七下期末)近日来,长江中下游连降特大暴雨,沿江两岸的群众受灾很严重.“一方有难,八方支援”我校某班准备捐赠一批帐篷和食品包共个,其中帐篷比食品包多个.
(1)求帐篷和食品包各有多少个?
(2)现计划租用甲、乙两种型号的货车共辆,一次性将这批帐篷和食品包运往受灾地区.已知每辆甲种货车最多可装帐篷个和食品包个,每辆乙种货车最多可装帐篷个和食品包个.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种型号的货车每辆需付运费元,乙种型号的货车每辆需付运费元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?
4、(2020长雅七下期中)某商场用元购进甲、乙两种商品,销售完后共获利元,其中甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.
(1)该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于元,乙种商品最低售价为每件多少元?
七年级培优教材答案
第一讲 实数及其简单应用
题型一、求平方根、算术平方根
例1、(1) (2) (3)
例2、
演练1、 演练2、
例3、
演练1、 演练2、
易错题1、 易错题2、 易错题3、
题型二、开平方及相关运算
例4、 (1) (2) (3) (4)或
演练1、 或
题型三、求立方根、开立方及相关运算
例5、
演练1、 演练2、
题型四、平方根和立方根的简单应用
例6、
演练1、
例7、
演练1、 演练2、
例8、
演练1、
题型五、实数的概念与分类
例9、
演练1、 演练2、 演练3、
例10、
演练2、
题型六、实数的计算
例11、 (1) (2)或
演练1、(1) (2)或
例12、
演练1、(1) (2) 演练2、 演练3、
加餐练习、
1. 2. 3. 4. 5. 6.
题型七、实数的估算
例13、
演练1、
例14、
演练1、 演练2、
勤练习 促掌握
1. 2. 3. 4. 5. 6. 7. 8. 或
9. 10. 11. 12. 13. 14. 15.
第二讲 实数的综合应用
题型一、利用实数性质解题
例1、
演练1、 演练2、 演练3、
例2、
例3、
演练1、 演练2、 演练3、
例4、
演练1、 演练2、 演练3、
例5、
演练1、(1) (2)
例6、
演练1、
题型二、实数与化简
例7、
演练1、 演练2、(1) (2)
题型三、实数中其他应用
例8、 ① ② ③ ④
演练1、
例9、
例10、
题型四、实数中的新定义
例11、
演练1、
例12、 (1) (2)
例13、
演练1、 演练2、
例14、
演练1、(1) (2) (3)
勤学习 促掌握
1. 2. 3. 4. 5. 6. 7.
8. (1) (2) 9. 10.
第三讲 实数的综合应用
题型一、平面直角坐标系与点的坐标
例1、
例2、
演练1、 一
例3、
演练1、 演练2、 演练3、
例4、
演练1、 演练2、
例5、
演练1、 演练2、 演练3、
例6、
例7、
题型二、坐标系中的平移
例8、
演练1、 演练2、
例9、
例10、
演练1、
例11、
演练1、 演练2、 演练3、
题型三、坐标系中的对称、位置
例12、
演练1、(1) (2),为任意实数 (3)
例13、
演练1、
题型四、坐标系的面积
例14、 (1) (2) (3)或
例15、 (1),, (2)
(3) 或
演练1、(1),, (2)略
(3)
演练2、 (1),, (2)
勤学习 促掌握
1. 2. 3. 4. 5. 6.
7. 8. 9. ,
10. (1),, (2).
11. (1)略 (2),,
第四讲 坐标系中的规律探究与新定义
题型一 一般规律问题
例题 1. 2. 3.
演练 1. 2.
例题 4.
演练 1.
题型二 正方形中的规律问题
例题 5.
演练 1. 2.
例题 6.
演练 1.
题型三 旋转类规律问题
例题 7.
演练 1.
例题 8.
题型四 坐标系中的新定义
例题 9. 10.(1)①,;②;(2)“识别距离”最小值为,
11. (1);(2);(3)
12. (1);(2);(3),
勤练习,促掌握
1. 2. 3. 4. 5. 6.(1);(2);(3)等腰三角形,理由如下:根据题意可求出
第五讲 坐标系中的综合应用
题型一、坐标与面积
例1、 (1) (2)
(3)设
, 或
例2、①
②
③当在线段上时,当在点左侧时
题型二、坐标与角度、面积的结合
例3、(1)
(2)的平分线和的平分线交于点
设,则
作,则
又
(3)存在某一时刻,使的面积等于长方形面积的,
作 轴于,,
例4、 (1)∵且
∴,
又∵点关于轴对称点为点
∴点的坐标
(2)∵为中点,为中点
∴为重心
∴
又∵
∴
(3)由题意可得:
∴
又∵
∴
又∵
∴
题型三、坐标与平行、面积的结合
例5、 (1)由题意得:,,
∴,,
∴点、、的坐标为:,,
(2)不变,
如图2,过点做
∵,
∴
∴,
∵,∴
∵,∴
∴
∵、分别平分,
∴,
∴
(3)设点
①若点位于轴正半轴上且,过点作轴,则
,,
由题意得:,即,解得.此时点
②若点位于轴负半轴上,则,
由题意:,即,解得,此时
③若点位于轴正半轴上且,此时显然不成立
综上所述:存在或使的面积等于的面积的
例6、 (1)∵
∴,
∴,
∴,
∴
(2)存在点或使,证明如下:
设坐标为,在
∴,
∴坐标为或
(3) (过点作轴平行线即可)
例7、 (1)
(2)
或
(3)设旋转t s后OA与CN平行
①当时
②当时
同理可得
(舍)
③时,如图2
同理可得:
综上所述或
题型四、坐标系中的定值问题
例8、 (1)
(2)
(3) 定值为3
例9、 (1)
又
(2) 当入射角为时,反射光线与平行
(3)
题型五、坐标系中的动态问题分析
例10、 (1)
(2)根据平移性质得: ,
∴ ,解得:AC=6,
(3)∵AC∥x轴,AC=6,∴C的坐标为(6,3),根据平移性质得D(4,7),
,
∴,∵B点横坐标为2,
又∵ ,
∴当P点在M,N点时等式成立,
满足条件的时间t如下:
1) 开始到第一次掉头时, ;
2) 第一次掉头到第二次掉头时, ;
3) 第二次掉头到第三次掉头时, ;
4) 第三次掉头到第四次掉头时, ;
5) 第四次掉头到第五次掉头时,(不符合题意),
∴符合的时间有:0s,18s,27s,33s,37.5s
例11、 (1)
(2) ① ② ③
(3) 或
勤练习 促掌握
1. (1) (2) (3)
2. (1)
(2) 或
(3)
3. (1),
(2)的大小不变
延长、交于点
∵直线与直线垂直相交于
∴
∴
∴
∵、分别是和的角平分线
∴,
∴
∴
∴
∴
∵、分别是和的角平分线
∴
∴
(3)∵与的角平分线相交于
∴,
∴
∵、分别是和的角平分线
∴
在中
∵有一个角是另一个角的倍,故有:
①,,
②,,(舍)
③,,
④,,(舍)
∴为或
4. (1)
(2) (提示:方程解题)
(3) ①当时,;当时,
②
第六讲 二元一次方程(组)及其解法和应用
题型一 二元一次方程(组)的定义
例题 1.
演练 1. 2.
例题 2. 3.
演练 1.
例题 4.
演练 1.
题型二 二元一次方程(组)的解的概念
例题 5.
演练 1. 2. 3.
题型三 二元一次方程(组)的解法
例题 7.
演练 1. 2.
例题 8.
演练 1. 2.
例题 9.(1);(2)
演练 1.(1);(2) 2.(1);(2)
3.(1);(2)
例题 10.
演练 1. 2. 3.
例题 11.(1);(2)
演练 1.(1);(2)
题型四 二元一次方程组一般应用
例题 12. 13. 14.
题型五 古文中的二元一次方程组
例题 15.
演练 1.
题型六 图形中的二元一次方程组
例题 16.
演练 1. 2.设加工竖式纸盒个,横式纸盒个。依题意,得
解得
题型七 二元一次方程组综合应用
例题 17.(1)设排球单价元,实心球单价元。依题意,得解得;(2)(元)
演练 1.(1)设购进甲型口罩个,乙型口罩个。依题意,得
解得;(2)设每袋乙型口罩打折。,,四折。
2.(1)购进黑色文化衫件,白色文化衫件。依题意,得解得;
(2)(元)
3.(1)设型车进价为元,型车进价为元。依题意,得解得;
(2)方案①型车:2辆,型车:15辆;方案②型车:4辆,型车:10辆;
方案③型车:6辆,型车:5辆。(3)方案①利润最大,最大利润是元。
勤练习,促掌握
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.(1);(2) 13.(1);(2)
14.设长方形地砖的长为,宽为。依题意,得解得。
15.(1)设茄子的种植面积为公顷,西红柿的种植面积为公顷。依题意,得解得;(2)(万元)
第七讲 含参二元一次方程(组)的解法
题型一、特殊方程组的解法
例1、
演练1、
例2、 、、
演练1、
例3、 、、
演练1、 、、
演练2、 (1) (2)、、、
例4、
演练1、
例5、
题型二、已知解求参数
例6、
演练1、 演练2、
题型三、已知解的关系求参数
例7、
演练1、 演练2、 演练3、 演练4、略
题型四、同解问题与错解问题
例8、
演练1、
例9、
演练1、(1)、 (2)、
题型五、整数解问题
例10、
例11、 (1)、 (2)
题型六、二元一次方程组中的新定义
例12、 (1) (2)
(3) ①当,时,不存在解坐标
②当,时,存在无数个解坐标
演练1、(1) (2) (3)
勤练习 促掌握
1. 2. 3.
4. (1) (2)
5. 6. 、、原式
7. (1)①不是②的“中雅方程组”
(2)或或
(3)
第八讲 一元一次不等式与不等式组
题型一、不等式的概念和性质
例1、
例2、
演练1、 演练2、 演练3、 演练4、
题型二、一元一次不等式的概念和解法
例3、
例4、
演练1、
例13、
演练1、
例5、
演练1、
例6、
例7、
演练1、 演练2、
例8、
题型三、一元一次不等式组的概念和解法
例9、 (1) (2)
演练1、 演练2、 演练3、
例10、
演练1、 演练2、 演练3、 整数解为、、
例11、
例12、
演练1、
勤练习 促掌握
1. 2. 3. 4. 5. 6.
7. 8. 9.
10. (1) (2) 11.
12. (1) (2) 13. (1) (2)
14. 非整数解的和为 15.
第九讲 一元一次不等式组的实际应用
题型一、实际应用
例1、
演练1、(1)奖品每件元,奖品每件元
(2)奖品最多购买件
题型二、方案选择
例2、 (1)甲种客车载客量为人,乙种客车载客量为人
(2)两种租车方案①甲车辆,乙车辆②甲车辆,乙车辆,第①种方案最省钱
演练1、 (1)老师有人,学生有人;
(2)辆
(3)种,元
例3、 (1)大型渣土车每次运土方吨,小型渣土车每次运土方吨
(2) ①大型渣土车辆,小型渣土车辆,总费用为元
②大型渣土车辆,小型渣土车辆,总费用为元
③大型渣土车辆,小型渣土车辆,总费用为元
④大型渣土车辆,小型渣土车辆,总费用为元
最少需要花费元。
演练1、(1)类货车每辆补贴油费元,类货车每辆补贴油费元
(2)最少为元。
演练2、(1)甲货车每次满载能运输吨物资,乙货车每次满载能运输吨物资
(2)安排甲货车辆,乙货车辆最节省费用,最少为元
例4、 (1)型号的扫地车每周可以处理吨,型号的扫地车每周可以处理吨。
(2)一共有三种方案:
①购买型扫地车辆,型扫地车辆
②购买型扫地车辆,型扫地车辆
③购买型扫地车辆,型扫地车辆
方案①所需资金最少,最少为万元。
例5、 (1)改造个甲种型号大棚需要万元,改造个乙种型号大棚需要万元
(2)一共有三种方案:
①改造个甲种型号大棚,个乙种型号大棚
②改造个甲种型号大棚,个乙种型号大棚
③改造个甲种型号大棚,个乙种型号大棚
方案③所需资金最少,最少为万元。
例6、 (1)甲种笔每支元,乙种笔每支元
(2)共有种进货方案。
演练1、(1)甲种文具每件元,乙种文具每件元
(2)一共有三种方案:
①购买甲种文具件,乙种文具件
②购买甲种文具件,乙种文具件
③购买甲种文具件,乙种文具件
演练2、(1)每件甲产品的成本价为元,每件乙产品的成本价为元
(2)一共有三种方案:
①购进件甲产品,件乙产品
②购进件甲产品,件乙产品
③购进件甲产品,件乙产品
方案③利润最大,最大利润为万元。
例7、 (1)每本数学文化的价格为元,每本文学名著的价格为元
(2)一共有三种方案:
①购进数学文化本,文学名著本
②购进数学文化本,文学名著本
③购进数学文化本,文学名著本
演练1、(1)甲种奖品的单价为元,乙种奖品的单价为元
(2)一共有三种方案:
①购买甲种奖品个,乙种奖品个
②购买甲种奖品个,乙种奖品个
③购买甲种奖品个,乙种奖品个
方案①最省钱
例8、 (1)购买种树每颗需要元,购买种树每颗需要元
(2)一共有三种方案:
①购买种树棵,购买种树棵
②购买种树棵,购买种树棵
③购买种树棵,购买种树棵
演练1、(1)购买种树苗每颗需要元,购买种树苗每颗需要元
(2)一共有三种方案:
①购进种树苗棵,购进种树苗棵
②购进种树苗棵,购进种树苗棵
③购进种树苗棵,购进种树苗棵
方案①最省钱,最少工钱为元
例9、 (1) (2) (3),为或
例10、 (1)①③ (2) (3)
勤练习 促掌握
1. (1)奖品的单价为元,shshan商品的单价为元
(2)至少购买zh种商品个
2. (1)一件文化衫元,一套明信片元
(2)购买文化衫件,购买明信片套
3. (1)帐篷有个,食品包有个
(2)方案一:安排辆乙种货车;方案二:安排辆甲种货车,辆乙种货车;方案三:安排辆甲种货车,辆乙种货车;方案四:安排辆甲种货车,辆乙种货车;方案五:安排辆甲种货车,辆乙种货车;
(3)选用方案运费最少,最少是元。
4. (1)甲商品件,乙商品件
(2)乙商品最低售价为每件元
第十讲 不等式组的综合应用
题型一、已知范围求解
例1、
演练1、
演练2、 演练3、
演练4、 (1) (2) (3) 为
演练5、(1) (2) (3)
题型二、整数解问题
例2、
例3、
演练1、 演练2、
题型三、不等式中的新定义
例4、 (1)① ② (2) (3) (4)或
演练1、(1) (2) (3)或
演练2、(1)① ② (2) (3)或
例5、 (1) (2)① ② ③
例6、 (1)① ② (2)或 (3)
例7、 (1) (2) (3)
例8、 (1) (2)或 (3)
例9、 (1)②是 (2)或 (3)
例10、 (1) 是 (2) (3)
例11、 (1)存在“雅含”关系,是的“子式”
(2) (3)
勤练习 促掌握
1. 2. 3. 4.
5. (1) (2) 6.(1) (2)
7.(1) (2) (3)或
8. (1) (2) (3)
第十一讲 调查统计和直方图
题型一、统计相关的概念
例1、 每名考生的数学成绩
演练1、
例2、
例3、
演练1、 演练2、 演练3、③
例4、
例5、
例6、
演练1、 演练2、 演练3、
例7、
题型二、数据的描述
例8、
演练1、 演练2、
例9、 (1)人 (2) (3) 名
演练1、(1)名 (2) (3)名
演练2、(1)名 (2) (3)名
演练3、(1)踢毽子人数为名 (2) (3)人
演练4、(1) (2)略 (3)万人
演练5、(1)吨 (2) (3)吨
勤练习 促掌握
1. 2. 3.
4. (1)名 (2) (3)万户
5. (1) (2)略 (3)名
6.(1), (2)略 (3)人
第十二讲 三角形及其简单应用
题型一、三角形的稳定性
例1、
演练1、
例2、
题型二、三角形的边
例3、
演练1、 演练2、 演练3、 演练4、
例4、
演练1、 演练2、
例5、
演练1、 演练2、 演练3、 演练4、
题型三、三角形的角
例6、
例7、
演练1、 演练2、
例8、
例9、
演练1、 八边形 演练2、
例10、
演练1、 十二 演练2、 演练3、
例11、
例12、 (1) (2)
演练1、 (1) (2)
题型四、两大模型的应用
例13、 (1) (2) (3)
例14、 (1)在和中
(2) 由(1)得
例15、 (1)
(2)
例16、 (1)、、
(2)
(3)
例17、
演练1、 演练2、
勤练习 促掌握
1. 2. 3. 4. 5. 6.
7. 8.三角形得稳定性 9. 10.
11. 12. 13.(1) (2)
14.
15.(1)
(2)
(3)
第十三讲 全等三角形
题型一 全等三角形的性质
例题 1.
演练 1. 2.
例题 2. 3.
演练 1.
例题 4.
演练 1.(1)先求证即可证明;(2)由(1)可得,所以
例题 5.
演练 1.(1)∵∴;(2)∵是等腰直角三角形,∴垂直平分
2.(1)∵∴;(2)由(1)可知∴是等腰三角形,
例题 6.(1)∵∴;(2)设点到的距离为,,
演练 1.(1)∵∴;(2)
例题 7.(1)∵∴;(2),∵∴,
演练 1.(1)∵平分,∴
又,
∴,
∵,度,∴度
又度,∴度,度
(2)由题知,∴
∵度,∴,∴度,∴度
又平分,∴
又,∴,∴
2. (1)∵∴;(2)且,
由(1)可知,;
(3) .
例题 8.①②③ 9. 10.
11.
演练 1.(1)1;(2)过点作,∵∴,∴
2.方法一:过点作,∵∴,
方法二:过点作,过点作,∵∴,∴,
方法三:过点作交的延长线于点,∴,
例题 12.延长至点,使,∵
∴,在中,﹤,﹥
∴﹤﹤
演练 1. 2.②③④
例题 13.截长:
补短:延长至点使,∵∴,∵,,∴,
演练 1.延长到点,使,连接
例题 14.
15.
16. ③⑤⑥
勤练习,促掌握
1. 2. 3. 4. 5. 6.(1)由题可知,所以;(2)
7.(1);(2);(3)当,当。
8.
9.【证明】∵
∴,(两直线平行,内错角相等)
∵
∴
又∵
∴
∴
∴,(等式的性质)
∴
10.【证明】(1)由题意可知,
∴,
又
在和中
,,
∴,∴
∵,
∴,∴,即
(2)∵,∴ ①
∵,∴
∵,
∴ ②
∴由①、②得:,
11.
12.
13.
第十三讲 全等三角形中的模型
题型一 一线三垂直
例题 1.
2.(1)∵,,,∴,;(2)连接,,∴,∵,∴
3.过点,分别作,先求证可知;再求证可知;∴,∴,是的中线
4.(1)①,;②,求证;
(2)
题型二 角平分线模型
例题 5.
6.
7.
演练 1.
2. 3. 4. 5.(1);(2);
(3)在上截取,连
在和中
∴
∴,
又,
∴
∴
∴
题型三 手拉手模型
例题 8.
演练 1.①②③④
例题 9.
10.
11.(1)∵∴,
(2)∵∴,
题型四 半角模型
例题 12.
13.
演练 1.(1)①;②相等,;(2)①
2. (1);(2)
勤练习,促掌握
1.
2.
3.【解析】(1)证明:∵,
∴
在和中
∴
∴
则,,
∴平分
(2)由(1)知,又
∴
4.
5.
6. (1);(2),求证
7.
8.
第十四讲 全等三角形综合
题型一 全等中的新定义
例题1.(1)∵四边形是互补等对边四边形
∴
在和中
∴
(2)∵四边形是互补等对边四边形
∴
又由(1)
∴
∴
∵
∴
∴
(3)证明:如图③所示:过点、分别作的延长线与的垂线,垂足分别为、
∵四边形是互补等对边四边形,
∴,
又
∴
又∵,
∴
在和中
∴
∴
在和中
∴
∴
∵
∴
∴
∵
∴
∵,
∵
例题2.
例题3.
题型二 全等三角形中的大综合
例题4.(1)证明:如图,设
则,
在中,∵
∴
∴
∴
∴平分
(2)证明:如图,过点作于点,过点作交的延长线于点
∵
∴
∴,
∴
在和中,
∴
∴
在和中,
∴
∴
(3)解:如图,连接
在和中
∴
∴
∵
∴
∴
∵
∴
∵
∴
∴
例题5.
例题6.
例题7.(1)、、
(2)∵,;又
∴或
当在线段上时,如图①.连接、,则
∵
∴,.又为中点
∴,且
又
∴
又
∴
∴,
∵
∴
即轴
∴.
当在线段的延长线上时,如备用图
∴
由①得,
∴
又
∴
∴,
∵
∴
即轴
∴
综上所述:点的坐标为或
(3)设,.过点作直线轴.
∵
∴
又,
∴
∴,且
∵
∴
∴轴
∴.
∴当从点沿轴负方向运动时,点从点沿直线向下运动
∵为中点
∴
又
∴
∴
∴
∵
∴,且
∴
∴
∴
∴点从运动至.路径长为
例题8.
勤练习,促掌握
1.①③④
2.(1)证明:证明即可
(2)解:①当时,点在线段上,点在线段上
,
∴
∴(不合题意,舍去)
②当时,点在线段上,点在线段上
,
∴
∴
综上,
综上所述当时,与全等
(3)解:∵
∴
∵
∴
∵
∴
∴
∵,
∴
3.
4.
(3)