还剩61页未读,
继续阅读
成套系列资料,整套一键下载
【精品同步】数学同步培优练习八年级下册19.1 函数与变量(知识梳理+含答案)
展开
这是一份【精品同步】数学同步培优练习八年级下册19.1 函数与变量(知识梳理+含答案),共64页。
第十九章 一次函数19.1 函数与变量要点一:变量和常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量.详解:如在行程问题中,当速度保持不变时,行走的路程的长短随时间的变化而变化,那么在这一过程中,是常量,而和是变量. 当路程是个定值时,行走的时间随速度的变化而变化,那么在这一过程中,是常量,而和是变量. 注意:(1)变量和常量往往是相对的,对于不同的研究过程而言,其中的变量和常量是不相同的,变量和常量的身份是可以相互转换的,如:三者之间;(2)区分常量与变量,就是看某个变化过程中,该量的值是否可以改变(即是否会取不同的数值);(3)在讨论常量和变量的关系时要考虑变量的实际意义,如:长度,天数,身高不能为负数,人数必须是非负整数等. 要点二:函数的概念一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一的值与其对应,那么就说为自变量,为因变量,是的函数. 详解:例如,一列货车以的速度匀速行驶,如果行驶了,那么路程(). 这时的速度是不变的量,而和是变化着的量,可以在非负实数范围内取任意值,对于的每一个确定的值,必可以求出唯一的一个确定的路程与之相对应,因此路程是时间的函数. 注意:对函数概念的理解,主要应该抓住以下五点:(1)在某一个变化过程中必须有两个变量与. 如等. (2)对于自变量的取值,必须使代数式有意义. 如:中的自变量可以在实数范围内取值;如中的被开方数要满足. 另外,在实际问题中,自变量的取值必须使实际问题有意义. 如多边形的内角和是边数的函数,即,如果只是从代数式有意义的角度来考虑,是可以取任意实数的,但我们知道多边形的边数必须是大于2的正整数. (3)函数的实质揭示了两个变量之间的对应关系:每取一个值,都有唯一的值与之相对应,否则就不是的函数. (4)判断两个函数是不是同一个函数,应该从自变量的取值范围,函数的取值范围、函数解析式是否一致来判断. 如:①和②,其中①中的可以取任意实数,②中的取不等于0的实数,所以和不是同一个函数. (5)含有一个变量的代数式可以将这个变量和代数式看作两个变量,代数式是这个变量的函数. 如,我们可以将和看作两个变量,随的变化而变化,在实数范围内每取一个值,就有唯一的值与之对应,所以是的函数. 要点三:自变量的取值范围函数关系式中自变量的取值范围必须使函数解析式有意义. (1)当函数解析式是整式时,自变量的取值范围可取全体实数;(2)当函数解析式是分式(分母中含有字母)时,自变量的取值范围要使分母不等于零. (3)当解析式是偶次根式时,自变量必须使被开方数是非负数;(4)对于实际问题中的函数,除使解析式有意义外,还要使实际问题有意义;(5)自变量的取值范围可以是有限的或无限的,也可以是几个数或单独的一个数. 例如:中,自变量的取值范围是;中,自变量的取值范围是. (6)在一个函数关系式中,当自变量同时含在分式和二次根式中时,函数自变量的取值范围是使它们分别有意义的取值的公共部分. 要点四:函数值对于一个函数,当自变量时,我们可以求出与它对应的的值,我们就说这个值是时的函数值. 详解:(1)当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值,求相应的自变量的值就是解方程. (2)对于一个函数,可能有若干个函数值. 取不同的值,函数值可能不相等. 因此我们应该说明自变量取什么值时的函数值,如:函数,当时的函数值是,时的函数值就是0. 而不能简单地说函数的函数值是. 要点五:函数的表示方法函数的表示方法,一般有三种:解析式法、列表法和图象法,其中解析式法应用较多. 有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示. 详解:解析式(函数关系式):用来表示的函数关系式的数学式子叫做函数解析式或函数关系式,例如以前我们学过的代数式都是解析式. (1)解析式法:用解析式来表示函数关系的方法叫做解析式法. 解析式法能揭示变量之间的内在联系,便于我们研究、分析变化趋势,但较抽象,且并不是所有的函数都能列出解析式. 如:人的体重和时间之间的函数关系,就很难用解析式法来表示. (2)列表法:用表格来表示函数关系的方法,这种方法比较具体,但有时很难找出两个变量之间的内在联系. (3)图象法:用图象来表示函数关系的方法,这种方法直观,通过图象可以直观地发现两个变量之间的对应关系及变化发展趋势,但不精确. 三种方法各有优缺点,在学习应用中,应视具体情况,选择适当的表示法,或将三种方法结合适用. 要点六:图象的概念一般地,对于一个函数,如果你把自变量和函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点所组成的图形,就是这个函数的图象. 详解:如:对于函数,在坐标平面内描出的横坐标和纵坐标相等的点. 由几何知识(到一个角两边距离相等的点的轨迹是这个角的角平分线)知,这样的点组成的图形是一条直线(第一、三象限角平分线),这条直线就是函数的图象,如下图所示. 函数图象上的点的坐标与其解析式之间的关系:由函数图象的定义可知图象上任意一点中,是解析式方程的一个解. 反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上. 通常判定点是否在函数图象上的方法:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上;如果不满足函数解析式,这个点就不在函数的图象上. 说明:两个函数图象的交点,就是这两个函数解析式所组成的方程组的解. 由于实际问题的制约,自变量的取值范围,应符合以下条件:①使函数表达式有意义;②符合题意与实际情况. 要点七:由函数解析式画图象的一般步骤(1)列表:列出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出对应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来. 注意:用描点法画函数图象应注意以下几点:(1)列表时要根据自变量的取值范围取值,从小到大或自中间向两边选取,取值要有代表性,尽量使画出的函数图象能反映出函数的全貌. (2)描点时要以表中每对对应值为坐标,点取得越多,图象越准确. (3)连线时要用光滑的曲线把所描的点顺次连接起来. 函数的图象可以是直线或者是射线或线段或曲线,它形象直观地反映两个变量之间的对应关系,在确定函数图象时要注意自变量的取值范围. 类型一、常量、变量、自变量、因变量及函数关系式例1、写出下列各问题中所满足的关系式,并指出各关系式中,哪些是常量,哪些是变量. (1)购买单价是0.4元的铅笔,总金额(元)与购买的铅笔之间的关系;(2)运动员在一周的跑道上训练,他跑一圈所用的时间与跑步速度的关系. 解析:(1)与之间的关系式为:,其中,常量为0.4,变量为和. (2)与之间的关系式为: ,其中,常量为400,变量为与. 类型二、判断是否是函数关系例2、判断下面变量之间的关系是不是函数关系:(1)已知圆的半径,则圆的面积;(2)长方形的宽一定时,其长与周长;(3)王明的年龄和他的身高. 练习:下列式子中的y是x的函数吗?为什么?(1);(2) ;(3) (4) ;(5);(6) 例3、下列各图象中,y不是x的函数的是( )A B C D练习:下列图象中,表示y是x的函数的是( ) OyxOyxOyxOyx A B C D 例4、下列函数中与表示同一函数的是( )A. B. C. D.提示:表示同一函数,自变量的取值要相同,化简后的解析式要相同.类型三、函数自变量的取值范围例5、函数中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3解析:求x的取值范围,可根据题目要求列出下列式子: 解得x≤2且x≠3, 故选A练习:求下列函数中自变量的取值范围:(1); (2); (3);(4); (5); (6).类型四、写出函数关系式例6、已知等腰三角形的周长为,设底边长为,腰长为,试写出关于的函数关系式,并确定的取值范围. 若底边长为,求腰长是多少?解析:由题意得,,所以. 由解析式本身有意义,得为全体实数. 又由使实际问题有意义,则要考虑边长为正数,且要满足三角形三边关系定理. 所以有:即,解得. 当时,,解得. 所以腰长是. 例7、已知:函数,当时,. (1)求的值;(2)当时,求的值. 类型五、函数与图象例8、如图,圆柱形开口杯的底部固定在长方体池底,向水池匀速注入水(倒在杯外),水池中水面高度是h,注水时间是t,则h与t之间的关系大致为下面图中的( )解析:由题意知,此注水过程中分为三段:⑴由于圆柱形开口杯底部固定在长方体水池,也就是说水池被开口杯占据了一部分空间,因此注水时水池中水面上升的速度较快,其图象是一段自原点出发较陡的上升线段;⑵当水的与开口杯口等高时,水开始注入开口杯,也就是说水池中水面高度不变,则其图象是一段平行于t轴的水平线段;⑶当开口杯注满时,水位开始上升,由于水池的此部分空间比⑴段大,因此水池中水面上升的速度要比⑴段速度慢,则其图象是一段比⑴段中上升线段较缓的上升线段,由此可知答案应选B.练习:1、如图所示,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h与注水时间t的函数关系式,大致是下列图象中的( )2、某蓄水池的横截面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是( )3、用均匀的速度向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图表示(图中OAB为一折线),这个容器的形状是下图中的( )4、小明晚饭后出去散步,从家里出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明离家的距离(米)与离家的时间(分)之间的函数关系式是( )A BC D例9、如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象,如图2,若AB=6cm,则下列四个结论中正确的个数有( )①图1中的BC边长是8cm②图2中的M点表示第4秒时y的值为24③图1中的CD长是4cm④图2中的N点表示第12秒时y的值为18cm21个 B.2个 C.3个 D.4个解析:从图1和图2的对应情况可知:(1)由G到C运动2秒,可得GC4cm,即BC8cm;∴①正确(2)∵S△ABD,则M的纵坐标为24;∴②正确(3)∵P在CD上的时间从图2知为2秒;∴; ∴③正确(4)∵,,则点Q对应的时间t8. ∵点P从点F到点H运动的距离FH2×(12−8)8cm, ∴AHBC+DE−FH8+6−86cm, ∴图2中的N点表示第12秒时,点P到达H点,△ABP的面积是×6×618cm2. ∴④正确 故选D.练习:1、如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到的位置是( )A.N处 B.P处 C.Q处 D.M处2、如图1,在直角梯形ABCD中,动点P以每秒1个单位从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是( )A.3 B.4 C.5 D.6例10、画出函数的图象. 1. 下列关于圆的面积与半径之间的函数关系中,有关常量和变量的说法正确的是( )A. ,是变量,是常量 B. ,是变量,2是常量C. ,是变量,是常量 D. ,是变量,和2是常量2. 下表是一项试验的统计数据,表示皮球从高度d处落下时,弹跳高度b的关系下落高度d与弹跳高度b变化的关系式是( )A. B. C. D. 3. 下列各式,不能表示y是x的函数的是( )A. y3x2 B. C. (x>0) D. y3x+14. 下列曲线中,y不是x的函数的是( )5. 函数的自变量的取值范围是( )A. B. 且C. D. 且6. 下图是古代一种计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画有刻度,人们根据壶中水面的位置计算时间,若用表示时间,表示壶底水面的高度,下列的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)( )A B C D7. 如图,在矩形中,,,点从起点出发,沿方向向终点匀速运动. 设点走过的路程为,则线段与矩形围成的图形的面积为,下列图象中能大致反映和函数关系的是( )A B C D8. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,图中描述了他上学的情景,下列说法错误的是( )A.修车时间为15分钟 B.学校离家的距离为2000米C.到达学校时共用时间20分钟 D.自行车发生故障时离家距离为1000米9. 由于干旱,某水库的蓄水量随时间的增加而直线下降,若该水库的蓄水量V(万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是( )A.干旱开始时,蓄水量每天减少20万米3 B.干旱开始后,蓄水量每天增加20万米3 C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1200万米310. 一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,现时打开丙,直到水池中的水排空,水池中的水量V (m3)与时间T (h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是( )A.乙>甲 B.丙>甲 C.甲>乙 D.丙>乙11. 已知点P(x,y)在函数的图象上,那么点P应在平面直角坐标系中的( )A.第一象限 B.第二象限 C.第三象限 D.第四象限12. 函数的自变量x的取值范围是( )A. B.且 C.且 D.且13. 甲、乙两人在一次赛跑中,路程s与时间t的关系式如图所示,那么你可知道:(1)这是一次 米的赛跑;(2)甲、乙两人中先跑到终点的是 ;(3)乙在这次赛跑中的速度为 米/秒.14. △ABC底边BC上的高是6cm,当三角形的顶点C沿底边BC向点B运动时,三角形的面积发生了变化,如图所示.(1)如果三角形的底边BC长为x cm,那么三角形的面积y cm2可以表示为 ;(2)在这个变化过程中,常量是 ,变量是 ;(3)当底边长从12cm变化到3cm时,三角形的面积从 cm2变化到 cm2.15. 已知某一函数的图象如图所示,根据图象回答下列问题.(1)确定自变量的取值范围;(2)求当时,y的值是多少?(3)求当y0,4时,x的值是多少?(4)当x取何值时y的值最大?当x取何值时y的值最小?(5)当x在什么范围内取值时y随x的增大而增大?当x在什么范围内取值时y随x的增大而减小?如下图,在长方形中,是边上与点不重合的动点,过点的直线交的延长线于点,交于点(与不重合),且45°,设,梯形的面积为,求当时,和之间的函数关系式. 17. 一水库的水位在最近6天内持续上涨,记录数据如下表所示:(1)由记录表推出这6天中水位随时间n (天)变化的函数解析式,并画出函数图象;(2)据估计这种上涨的势头还会持续2天,试预测再过2天水位将达到多少米.八下第一本答案第十八章 平行四边形18.1 平行四边形的性质例1、A 练习:1.B 2.B 3.答案不唯一. BE=DF或BF=DE或∠BCE=∠DAF或AF∥EC等 4.C 例2、D 练习:B 例3、28 13 82 练习:AB=14cm AD=10cm 例4-练习:4cm例5:证明:∵ABCD,∴OA=OC,DF∥EB,∴∠E=∠F,又∵∠EOA=∠FOC,∴△OAE≌△OCF(AAS),∴OE=OF.练习:DE=BF.证明如下:∵ABCD,O为AC的中点∴OA=OC.又AE∥CF,∴∠EAO=∠FCO.故在△AOE与△COF中,∴△AOE≌△COF(ASA),∴AE=CF.又∵AD=CB(平行四边形的对边相等),∴AE−AD=CF−CB,即DE=BF.例6:AB=4cm,BC=6cm,平行四边形ABCD面积为cm2例7:证明:设:CE、DF相交于M∵平行四边形ABCD ∴AB∥CD AD=BC又∵AD=2AB,且AE=AB ∴BC=BE ∴∠E=∠ECB∵AB∥CD ∴∠E=∠ECD ∴∠ECD=∠ECB=∠BCD同样道理: ∠FDC=∠FDA=∠ADC∵平行四边形ABCD中AD∥BC ∴∠ADC+∠BCD=180º∴∠ECD+∠FDC=(∠BCD+∠ADC)=90º即∠MCD+∠MDC=90º ∴∠DMC=90º∴CE⊥DF课后巩固一、选择题1-4、BDAD 5、80° 6、3;6 7、150°;30° ;150° 8、49 9、9 10. BE =DF 证明略.11. 9cm12证明:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO(平行四边形的对角线互相平分),∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AOE≌△COF,∴OE=OF.13.答案:(1)解:有4对全等三角形.分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA.(2)证明:如图,∵OA=OC,∠1=∠2,OE=OF. ∴△OAE≌△OCF,∴∠EAO=∠FCO. 在ABCD中,AB∥CD,∴∠BAO=∠DCO.∴,即∠EAM=∠FCN.14.证明:∵四边形ABCD是平行四边形, ∴AB=CD, ∵AD∥BC, ∴∠1=∠2. ∵AF=CE, ∴AE=CF, 在△ABE和△CDF中,AB=CD,∠1=∠2,AE=CF,∴△ABE≌△CDF.18.2 平行四边形的判定例1-练习:点拨:欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG∥HE可用来证明四边形EGFH为平行四边形. 证明:∵ 四边形AECF为平行四边形, ∴ AF∥CE. ∵ 四边形DEBF为平行四边形, ∴ BE∥DF.∴ 四边形EGFH为平行四边形.2.证明:在等边△ADC和等边△AFB中 ∠DAC=∠FAB=60°. ∴ ∠DAF=∠CAB.又∵ AD=AC,AF=AB.∴ △ADF≌△ACB(SAS). ∴ DF=CB=CE. 同理,△BAC≌△BFE,∴ EF=AC=DC. ∴ 四边形DCEF是平行四边形(两组对边分别相等的四边形是平行四边形).3.证明:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AB∥DC, ∴∠ABE=∠CDF, ∵AG=CH, ∴BG=DH, 在△BEG和△DFH中, ∴△BEG≌△DFH(SAS); (2)∵△BEG≌△DFH(SAS), ∴∠BEG=∠DFH,EG=FH, ∴∠GEF=∠HFB, ∴GE∥FH, ∴四边形GEHF是平行四边形. 4.分析:因为题设与四边形内角有关,故考虑四边形的两组内角相等解决问题。解:(1)四边形ABCD是平行四边形,理由如下:∠ABC=∠ABD+∠DBC=30°+90°=120°,∠ADC=∠ADB+∠CDB=90°+30°=120°又∠A=60°,∠C=60°,∴∠ABC=∠ADC,∠A=∠C∴四边形ABCD是平行四边形(2)四边形ABC1D1是平行四边形,理由如下:将Rt△BCD沿射线方向平移到Rt△B1C1D1的位置时,有Rt△C1BB1≌Rt△ADD1∴∠C1BB1=∠AD1D,∠BC1B1=∠DAD1∴有∠C1BA=∠ABD+∠C1BB1=∠C1D1B1+∠AD1B=∠AD1C1,∠BC1D1=∠BC1B1+∠B1C1D1=∠D1AD+∠DAB=∠D1AB所以四边形ABC1D1是平行四边形例2、解答:证明:连接BF,∵△ADF和△ABC是等边三角形,∴AF=AD=DF,AB=AC=BC,∠ABC=∠ACD=∠CAB=∠FAD=60∘,∴∠FAD−∠EAD=∠CAB−∠EAD,∴∠FAB=∠CAD,在△FAB和△DAC中AF=AD,∠FAB=∠CAD,AB=AC,∴△FAB≌△DAC(SAS),∴BF=DC,∠ABF=∠ACD=60∘,∵BE=CD,∴BF=BE,∴△BFE是等边三角形,∴EF=BE=CD,在△ACD和△CBE中∵CA=BC,∠ACB=∠ABC,CD=BE∴△ACD≌△CBE(SAS),∴AD=CE=DF,∵EF=CD,∴四边形CDFE是平行四边形。练习:(1)易证 (2)DE=例3、解答:在四边形AECF中,∵ ∠EAF=60°,AE⊥BC,AF⊥CD, ∴ ∠C=360°-∠EAF-∠AEC-∠AFC=360°-60°-90°-90°=120°. 在ABCD中,∵ AB∥CD,∴ ∠B+∠C=180°.∠C+∠D=180°,∴ ∠B=∠D=60°. 在Rt△ABE中,∠B=60°,BE=2cm, ∴ AB=4cm,CD=AB=4cm.(平行四边形的对边相等) 同理,在Rt△ADF中,AD=6cm,∴ BC=AD=6cm, ∴ ∴ .练习:解:平移线段AM至BE,连EA,则四边形BEAM为平行四边形∴BE=AM=9,ED=AE+AD=15,又∵BD=12∴∠EBD=90°,BE⊥BD, ∴△EBD面积=又∵2AE=AD∴△ABD面积==36∴ABCD的面积=72.例4、解:延长BD交AC于点N. ∵ AD为∠BAC的角平分线,且AD⊥BN, ∴ ∠BAD=∠NAD,∠ADB=∠ADN=90°, 又∵ AD为公共边,∴ △ABD≌△AND(ASA) ∴ AN=AB=12,BD=DN. ∵ AC=18,∴ NC=AC-AN=18-12=6, ∵ D、M分别为BN、BC的中点, ∴ DM=CN==3.练习:B;解: 连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴ 线段EF的长度将保持不变.例5-练习:证明:如图,过M作ME∥AN,使ME=AN,连NE,BE,则四边形AMEN为平行四边形,∴NE=AM,ME⊥BC, ∵ME=AN=CM,∠EMB=∠MCA=90∘,BM=AC,∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2,∠3=∠4,∵∠1+∠3=90∘,∴∠2+∠4=90∘且BE=NE,∴△BEN为等腰直角三角形,∠BNE=45∘,∵AM∥NE,∴∠BPM=∠BNE=45∘.课后巩固1、解:(1)选证△BDE≌△FEC证明:∵△ABC是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF是平行四边形理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF是平行四边形。2、解:(1)∵ABCD是正方形,∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE(2)∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′,∵CE=CG,∴CG=AE′,∵四边形ABCD是正方形∴BE′∥DG,AB=CD∴AB-AE′=CD-CG,即BE′=DG∴四边形DE′BG是平行四边形点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形3、分析:因为题设条件是从四个顶点向对角线引垂线,这些条件与四边形EFGH的对角线有关,若能证出OE=OG,OF=OH,则问题可获得解决。证明:∵AE⊥BD,CG⊥BD,∴∠AEO=∠CGO,∵∠AOE=∠COG,OA=OC∴△AOE≌△COG,∴OE=OG同理△BOF≌△DOH∴OF=OH∴四边形EFGH是平行四边形4、四边形DEBF是平行四边形;理由是:连接BD,∵四边形ABCD是平行四边形,∴AO=CO,DO=BO;∵AE=CF,∴AO−AE=CO−CF,∴EO=FO,又∵DO=BO,∴四边形DEBF是平行四边形。5、证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD−ED=BC−BF,即AE=CF,在△AEO和△CFO中,⎧AE=CF ∠AEO=∠CFO ∠FCO=∠EAO,∴△AEO≌△CFO,∴OA=OC.6、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠F=∠E,∠FDO=∠EBO,又∵CF=AE,∴ED=BF,∴△EOD≌△FOB.∴OD=OB,OF=OE.即EF与BD互相平分。7、(1)易证 (2)由(1)可知AD=BC ∠DAF=∠BCE ∴AD∥BC ∴四边形ABCD是平行四边形8、∵BE是∠ABC的平分线,∠ABC=70∘,∴∠ABE=∠CBE=35∘,∠ADC=∠ABC=70∘,在ABCD中,∵AD∥BC,∴∠EBF=∠AEB=35∘,∵DF∥BE,∴∠ADF=∠AEB=35∘,∴∠CDF=35∘.9、证明:∵四边形ABCD是平行四边形,∴AD∥BC, ∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE∴∠ABE=∠AEB,∴AB=AE,∵CE⊥BE,∴∠EBC+∠ECB=90° ∵∠ABC+∠DCB=180°∴∠ABE+∠DCE=90°,∴∠BCE=∠DCE,同理得:CD=DE,∵AD=AE+ED=AB+CD=2CD,∴BC=2CD10、(1)证明:当∠AOF=90∘时,∵∠BAO=∠AOF=90∘,∴AB∥EF,又∵AF∥BE,∴四边形ABEF为平行四边形。(2)证明:∵四边形ABCD为平行四边形,在△AOF和△COE中∠FAO=∠ECO AO=CO ∠AOF=∠COE.∴△AOF≌△COE(ASA).∴AF=EC. 11、证明:连接BD,交AC于点O.∵四边形ABCD和EBFD均是平行四边形,∴OA=OC,OE=OF,∠ACD=∠BAC即∠FCD=∠EAB∴OA-OE=OC-OF,即AE=CF.∴在△ABE和△CDF中,∴△ABE≌△CDF(SAS)12、证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,DC∥AB.∵AE=CF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB,DE=BF.∵DC∥AB,∴∠CFB=∠ABF.∴∠AED=∠ABF.∴ME∥FN.又∵M、N分别是DE、BF的中点,且DE=BF,∴ME=FN.∴四边形ENFM是平行四边形。13、证明:∵ABCD,∴AB∥CD,BC∥AD,又∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∵AB=CD,∴BF=DE,∵BF∥DE,∴四边形BFDE是平行四边形,∴FG∥HE,∵GE∥FH,∴四边形EGFH是平行四边形,∴EG=FH特殊平行四边形类型一、矩形的性质例1、解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.练习:A例2、(1)证明:在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.∴∠EBF=∠DCF,∠BEF=∠CDF.∵AB=BE,∴BE=CD.在△ABD与△BEC中,∠EBF=∠DCF BE=CD ∠BEF=∠CDF,∴△BEF≌△CDF.(2)由(1)知,四边形BECD为平行四边形,则FD=FE,FC=FB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠FCD.又∵∠BFD=2∠A,∠BFD=∠FCD+∠FDC,∴∠FCD=∠FDC,∴FC=FD,∴FC+FB=FD+FE,即BC=ED,∴四边形BECD为矩形.例3、解析:证明:在ABCD中,AD∥BC, ∴ ∠BAD+∠ABC=180°, ∵ AE、BE分别平分∠BAD、∠ABC, ∴ ∠BAE+∠ABE=∠BAD+∠ABC=90°. ∴ ∠HEF=∠AEB=90°. 同理:∠H=∠F=90°.∴ 四边形EFGH是矩形.例4、证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,BC=AD.∵E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF.∴△BEC≌△DFA.(2)四边形AECF是矩形.∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD.∵E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴AE∥CF且AE=CF.∴四边形AECF是平行四边形.∵CA=CB,E是AB的中点,∴CE⊥AB,即∠AEC=90°.∴四边形AECF是矩形.例5、C;解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.练习:连接OP. ∵ 四边形ABCD是平行四边形. ∴ AO=CO,BO=DO, ∵ ∠APC=∠BPD=90°,∴ OP=AC,OP=BD,∴ AC=BD.∴ 四边形ABCD是矩形.课后巩固1-4:DDBC5.; 6. 30或14; 7.12; 8.;9.(1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF(ASA);(2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴ABCD是矩形.10.证明:(1)由折叠可得.∵ AD∥BC, ∴ ,∴ ,∴ .(2)猜想.理由:由题意,得,.由(1)知.在中,∵ ,,,,∴ .11、(1)证明:∵∠BAD=∠CAE, ∴∠EAB=∠DAC, 在△ABE和△ACD中 ∵AB=AC,∠EAB=∠DAC,AE=AD ∴△ABE≌△ACD(SAS); (2)证明:∵△ABE≌△ACD, ∴BE=CD, 又DE=BC, ∴四边形BCDE为平行四边形. ∵AB=AC, ∴∠ABC=∠ACB ∵△ABE≌△ACD, ∴∠ABE=∠ACD, ∴∠EBC=∠DCB ∵四边形BCDE为平行四边形, ∴EB∥DC, ∴∠EBC+∠DCB=180°, ∴∠EBC=∠DCB=90°, 四边形BCDE是矩形.12、证明:连接EG、DG,∵ CE是高, ∴ CE⊥AB. ∵ 在Rt△CEB中,G是BC的中点, ∴ EG=BC,同理DG=BC. ∴ EG=DG. 又∵ F是ED的中点, ∴ FG⊥DE.18.3.2菱形例1、证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.练习:1、50°;解:在菱形ABCD中,AB∥CD,∴∠CDO=∠AED=50°,CD=CB,∠BCO=∠DCO,∴在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠CDO=50°.2、C;例2、解:四边形DECF是菱形,理由如下: ∵ DE∥AC,DF∥BC ∴ 四边形DECF是平行四边形. ∵ CD平分∠ACB,∴ ∠1=∠2 ∵ DF∥BC, ∴ ∠2=∠3, ∴ ∠1=∠3.∴ CF=DF,∴ 四边形DECF是菱形.例3: 解:四边形AEDF是菱形,理由如下: ∵ EF垂直平分AD, ∴ △AOF与△DOF关于直线EF成轴对称. ∴ ∠ODF=∠OAF, 又∵ AD平分∠BAC,即∠OAF=∠OAE, ∴ ∠ODF=∠OAE.∴ AE∥DF, 同理可得:DE∥AF. ∴ 四边形AEDF是平行四边形,∴ EO=OF 又∵AEDF的对角线AD、EF互相垂直平分. ∴AEDF是菱形.例4、解析:(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.练习1.(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,∵EF垂直平分AC,垂足为O,∴OA=OC,∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形,②设菱形的边长AF=CF=xcm,则BF=(8−x)cm,在Rt△ABF中,AB=4cm,由勾股定理得42+(8−x)2=x2,解得x=5,∴AF=5cm.(2)①显然当P点在AF上时,Q点在CD上,此时A. C. P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形。因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A. C. P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=CD+AD−4t=12−4t,即QA=12−4t,∴5t=12−4t,解得t=,∴以A. C. P、Q四点为顶点的四边形是平行四边形时,t=秒。②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上。分三种情况:i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12−b,得a+b=12;ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12−b=a,得a+b=12;iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12−a=b,得a+b=12.综上所述,a与b满足的数量关系式是a+b=12(ab≠0).2.解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形 ∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a ∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM, ∴四边形AQMP为菱形课后巩固1、解析: 证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC, ∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°. ∵ ∠1=∠2, ∴ ∠3=∠4. ∵ EF⊥BC,AD⊥BC,∴ EF∥AD. ∴ ∠4=∠5.∴ ∠3=∠5.∴ AE=AG又 EF∥AG. ∴ 四边形AEFG是平行四边形. 又∵ AE=AG, ∴ 四边形AEFG是菱形. 方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC, ∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°. ∴ ∠3=∠4. ∵ EF⊥BC,AD⊥BC,∴ EF∥AD. ∴ ∠4=∠5.∴ ∠3=∠5. ∴ AE=AG. 在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG, ∴ △AEG≌△FEG. ∴ AG=FG. ∴ AE=EF=FG=AG. ∴ 四边形AEFG是菱形.2.证明:(1)ABCD中,AB∥CD,AB=CD ∵ E、F分别为AB、CD的中点 ∴ DF=DC,BE=AB ∴ DF∥BE.DF=BE ∴ 四边形DEBF为平行四边形 ∴ DE∥BF (2)证明:∵ AG∥BD ∴ ∠G=∠DBC=90° ∴ △DBC为直角三角形 又∵ F为边CD的中点. ∴ BF=DC=DF 又∵ 四边形DEBF为平行四边形 ∴ 四边形DEBF是菱形3.解析: 解:连接AC. ∵ 四边形ABCD是菱形, ∴ AB=BC,∠ACB=∠ACF. 又∵ ∠B=60°, ∴ △ABC是等边三角形. ∴ ∠BAC=∠ACB=60°,AB=AC. ∴ ∠ACF=∠B=60°. 又∵ ∠EAF=∠BAC=60° ∴ ∠BAE=∠CAF. ∴ △ABE≌△ACF. ∴ AE=AF. ∴ △AEF为等边三角形. ∴ ∠AEF=60°. 又∵ ∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°, ∴ ∠CEF=18°.4.C.解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF′=DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.5、解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16. 6、解答:(1)证明:∵D,E分别是AB,AC的中点,∴DE∥BC,2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC=BE,∴四边形BCFE是菱形。(2)∵四边形BCFE是菱形,∠BCF=120∘,∴∠ACB=60∘,∵BC=BE,∴△BEC是等边三角形,∴∠BEC=60∘,∵E是AC的中点,CE=4,∴AE=EC=BE=4,∴∠A=30∘,∴∠ABC=180∘−∠ACB−∠A=90∘.在Rt△ABC中,AB2=AC2−BC2,AB=18.3.3正方形例1、C.解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.练习:1、证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°∵E为BC延长线上的点,∴∠DCE=90°,∴∠BCD=∠DCE.在△BCF和△DCE中,,∴△BCF≌△DCE(SAS),∴BF=DE.2.B;提示:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;例2-练习:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90∘,∴四边形ADCE为矩形。(2)当△ABC满足∠BAC=90∘时,四边形ADCE是一个正方形。理由:∵AB=AC,∴∠ACB=∠B=45∘,∵AD⊥BC,∴∠CAD=∠ACD=45∘,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形。∴当∠BAC=90∘时,四边形ADCE是一个正方形。例3、证明:(1)∵AD=CD,点E是边AC的中点,∴DE⊥AC.即得DE是线段AC的垂直平分线.∴AF=CF.∴∠FAC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠FAC+∠BAF=90°.∴∠B=∠BAF.∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵点E是边AC的中点,∴AE=CE.在△AEG和△CEF中,,∴△AEG≌△CEF(AAS).∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF.即得点F是边BC的中点.又∵AB=AC,∴AF⊥BC.即得∠AFC=90°.∴四边形AFCG是正方形.例4、证明:(1)延长DC,使CH=AE,连接BH,∵ 四边形ABCD是正方形,∴ ∠A=∠BCH=90°,又AB=BC,CH=AE,∴ Rt△BAE≌Rt△BCH,∴ ∠1=∠2,BE=BH.又∵ ∠1+∠3+∠4=90°,∠4=45°,∴ ∠1+∠3=45°,∠2+∠3=45°,在△EBF和△HBF中∴ △EBF≌△HBF,∴ EF=FH=FC+CH=AE+CF.即AE+CF=EF. (2)如图所示:不成立,正确结论:EF=CF-AE.证明:在CF上截取CH=AE,连接BH.∵ 四边形ABCD是正方形,∴ 在Rt△EAB和Rt△HCB中,∴ Rt△EAB≌Rt△HCB,∴ BE=BH,∠EBA=∠HBC.∵ ∠HBC +∠ABH=90°,∴ ∠EBA +∠ABH=90°.又∵ ∠EBF=45°,∴ ∠HBF=45°,即∠EBF=∠HBF.在△EBF和△HBF中∴ △EBF≌△HBF,∴ EF=FH=CF-CH=CF-AE,即EF=CF-AE. 练习: 证法一:(间接折半法)如图①所示. ∵ ∠3=∠1+∠4,∠5=∠2+∠6. 而∠1=∠2,∠4=∠6=45°. ∴ ∠3=∠5,BE=BF. 取AE的中点G,连接OG, ∵ AO=OC,∴ OG EC. 由∠7=∠5,∠8=∠3, ∴ ∠7=∠8,∴ FO=GO. ∴ EC=2OG=2FO. 证法二:(直接折半法)如图②所示. 由证法一得BE=BF. 取EC的中点H,连接OH. ∵ AO=OC,∴ OH∥AE. ∴ ∠BOH=∠BFE=∠BEF=∠BHO. ∴ BO=BH,∴ FO=EH. ∴ EC=2EH=2FO. 证法三:(直接加倍法)如图③所示. 由证法一得BE=BF.在OD上截取OM=OF,连接MC.易证Rt△AOF≌Rt△COM.∴ ∠OAF=∠OCM,∴ AE∥MC. 由∠BMC=∠BFE=∠BEF=∠BCM, ∴ FM=EC.∴ EC=FM=2FO.例5、(1)等腰(2)如图①,连接BE,画BE的中垂线交BC与点F,连接EF,△BEF是矩形ABCD的一个折痕三角形。∵折痕垂直平分BE,AB=AE=2,∴点A在BE的中垂线上,即折痕经过点A.∴四边形ABFE为正方形。∴BF=AB=2,∴F(2,0).(3)矩形ABCD存在面积最大的折痕三角形BEF,其面积为4,理由如下:i、当F在边OC上时,如图②所示。,即当F与C重合时,面积最大为4.ii、当F在边CD上时,如图③所示,过F作FH∥BC交AB于点H,交BE于K.∵∴即当F为CD中点时,△BEF面积最大为4.下面求面积最大时,点E的坐标。i、当F与点C重合时,如图④所示。由折叠可知CE=CB=4,在Rt△CDE中,∴∴E(,2).ii、当F在边DC的中点时,点E与点A重合,如图⑤所示。此时E(0,2).综上所述,折痕△BEF的最大面积为4时,点E的坐标为E(0,2)或E(,2)..例6、解:(1)EG=CG,且EG⊥CG.(2)EG=CG,且EG⊥CG. 证明:延长FE交DC延长线于M,连MG,如图③, ∵ ∠AEM=90°,∠EBC=90°,∠BCM=90°, ∴ 四边形BEMC是矩形. ∴ BE=CM,∠EMC=90°, 又∵ BE=EF,∴ EF=CM. ∵ ∠EMC=90°,FG=DG, ∴ MG=FD=FG. ∵ BC=EM,BC=CD,∴ EM=CD. ∵ EF=CM,∴ FM=DM,∴∠F=45°. 又FG=DG,∠CMG=∠EMD=45°, ∴ ∠F=∠GMC,∴ △GFE≌△GMC,∴ EG=CG,∠FGE=∠MGC,∵ MG⊥DF,∴ ∠FGE+∠EGM=90°,∴ ∠MGC+∠EGM=90°即∠EGC=90°,∴ EG⊥CG.课后巩固1-5:DADBB 6.7 7.13 8.128 9.(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.10.(1)BE的长为 (2)证明:在FE上截取一段FI,使得FI=EH,∵由(1)知,△ADE≌△CDF,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°=∠DBC,∵∠DHE=∠BHF,∴∠EDH=∠BFH(三角形的内角和定理),在△DEH和△DFI中,DE=DF,∠DEH=∠DFI,EH=FI∴△DEH≌△DFI(SAS),∴DH=DI,又∵∠HDE=∠BFE,∠ADE=2∠BFE,∴∠HDE=∠BFE=∠ADE,∵∠HDE+∠ADE=45°,∴∠HDE=15°,∴∠DHI=∠DEH+∠HDE=60°,即△DHI为等边三角形,∴DH=HI,∴HF=FI+HI=HE+HD,即HF=HE+HD.11.(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG•FQ=×2×2=2.平行四边形单元测试1.C 2.D 3.B 4.C 5.D 6.C 7.A 8.B 9.A 10.D 11.B 12.A 13.60°,120° 14.3215.5 16.8 17.218.证明:因为四边形ABCD是平行四边形,所以AD=BC,AD∥BC,∠BAD=∠BCD,所以∠ADB=∠CBD,因为AF平分∠BAD,所以∠DAF=∠BAD,因为CE平分∠BCD,所以∠BCE=∠BCD,所以∠DAF=∠BCE,在△DAF和△BCE中,所以△ADF≌△CBE(ASA),所以AF=CE,∠AFD=∠CEB,所以AF∥CE,所以四边形AFCE是平行四边形.19.(1)证明:因为四边形ABCD是矩形,所以OB=OD(矩形的对角线互相平分),AE∥CF(矩形的对边平行),所以∠BEO=∠DFO,∠OBE=∠ODF,在△BOE与△DOF中,所以△BOE≌△DOF(AAS).(2)解:当EF⊥AC时,四边形AECF是菱形,证明:连接AF,EC,因为四边形ABCD是矩形,所以OA=OC(矩形的对角线互相平分),又因为△BOE≌△DOF,所以OE=OF,所以四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形),因为EF⊥AC,所以四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).20.(1)证明:因为菱形ABCD,所以AB=CD,AB∥CD,又因为BE=AB,所以BE=CD,BE∥CD,所以四边形BECD是平行四边形,所以BD=EC.(2)解:因为平行四边形BECD,所以BD∥CE,所以∠ABO=∠E=50°,又因为菱形ABCD,所以AC⊥BD,即∠AOB=90°,在Rt△AOB中,所以∠BAO=90°-∠ABO=40°,所以∠BAO的大小为40°.21.(1)证明:∵点D,E分别是边BC,AB的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE.(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.22.(1)证明:因为四边形ABCD为矩形,沿MN翻折后,A,C重合,所以AO=CO,AD∥BC,所以∠1=∠2,在△AON和△COM中,所以△AON≌△COM(ASA).(2)解:连接AM,因为四边形ABCD是矩形,AB=6,BC=8,所以∠B=90°,在Rt△ABC中,由勾股定理,得AC===10,由对折知,MN垂直平分AC,所以∠COM=90°,CO=AO=AC=×10=5,CM=AM,设BM=x,则AM=CM=BC-BM=8-x,在Rt△ABM中,由勾股定理,得AM2-BM2=AB2,即(8-x)2-x2=62,解得x=,所以BM=,CM=8-=,在Rt△COM中,由勾股定理,得OM=所以线段OM的长度为.23.(1)证明∵PC平分∠ACB,PD⊥CA,PE⊥CB,∴PD=PE.∴Rt△PCD≌Rt△PCE,∴CD=CE.在△DMC和△EMC中,∴△DCM≌△ECM,∴DM=EM.(2)解:当点M运动到线段CP的中点时,四边形PDME为菱形.理由如下:∵M为PC的中点,PD⊥CA,∴DM=PC,在直角三角形PDC中.∵∠ACB=60°,∴∠PCD=30°,∴PD=PC,∴DM=PD.由(1)得DM=EM,PD=PE,∴PD=PE=EM=DM,∴四边形PDME为菱形.24.(1)证明:因为E,F分别是AD,BD的中点,G,H分别是BC,AC的中点,所以EF∥AB,EF=AB,GH∥AB,GH=AB,所以EF∥GH,EF=GH,所以四边形EFGH是平行四边形.(2)解:当AB=CD时,四边形EFGH是菱形,理由:因为E,F分别是AD,BD的中点,H,G分别是AC,BC的中点,G,F分别是BC,BD的中点,E,H分别是AD,AC的中点,所以EF=AB,HG=AB,FG=CD,EH=CD,又因为AB=CD,所以EF=FG=GH=EH,所以四边形EFGH是菱形.25.(1)证明:因为E是AD的中点,所以AE=ED,因为AF∥BC,所以∠AFE=∠DBE,∠FAE=∠BDE,在△AFE和△DBE中,所以△AFE≌△DBE(AAS),所以AF=BD,因为AD是BC边中线,所以CD=BD,所以AF=CD.(2)解:四边形ADCF的形状是菱形.证明:因为AF=DC,AF∥BC,所以四边形ADCF是平行四边形,因为AB⊥AC,所以∠CAB=90°,因为AD为中线,所以AD=DC=BD=BC,所以平行四边形ADCF是菱形.(3)解:AB=AC.26.解:(1)作图如图(a)所示,因为△ABD和△ACE都是等边三角形,所以AD=AB,AC=AE,∠DAB=∠EAC=60°,因为∠DAC=∠DAB+∠BAC,∠BAE=∠BAC+∠CAE,所以∠DAC=∠BAE.在△DAC和△BAE中,所以△DAC≌△BAE(SAS),所以BE=CD.(2)BE=CD.理由:因为四边形ABFD和ACGE是正方形,所以AD=AB,AC=AE,∠DAB=∠EAC=90°,因为∠DAC=∠DAB+∠BAC,∠BAE=∠BAC+∠CAE,所以∠DAC=∠BAE,在△DAC和△BAE中,所以△DAC≌△BAE(SAS),所以BE=CD.(3)运用(1)(2)解答中所积累的经验和知识,以边AB为直角边向△ABC外作等腰直角三角形ABD,如图(b)所示.则∠BAD=90°,AD=AB,∠ABD=45°.在Rt△ABD中,AD=AB=100米,由勾股定理得,BD==100米.因为∠ABC=45°,所以∠DBC=∠DBA+∠ABC=45°+45°=90°,则△DBC为直角三角形.在Rt△DBC中,BC=100米,由勾股定理得,DC==100米.由(1)可知,BE=DC=100米.所以BE的长为100米.第十九章 一次函数19.1函数与变量例2、答案:(1)和(3)不是函数关系,(2)是函数关系。练习:答案:(1)(2)(4)是,(3)(5)(6)不是。答案:D 练习:C 例4:D; 练习:(1)x取任意实数(2)x取任意实数(3)(4)(5)(6)例7、答案:(1);(2);例8、B练习:1、B 2、A 3、C 4、D例9-练习:1、C 2、A例10、令x=0,则y=1;令y=0,则−2x+1=0,解得:x=.故函数y=−2x+1的图象过点(0,1),(,0).找出点(0,1),(,0),过该两点作直线即可,如图所示。巩固练习一、选择题1-5、CCCBB 6-10、BAAAC 11-12、BD13、(1) 100 (2) 甲 (3) 814、(1) (2)BC边上的高;底边BC的长和△ABC的面积 (3) 36;915、(1) (2)x=-4,y=2;x=-2,y=-2 (3)y=0,x=-3,-1,4;y=4,x=1.5 (4)时,y的值最大为4;时,y的值最小为-2(5)当时,y随x的增大而增大;当或时,y随x的增大而减小.16、17、(1) ,如图 (2)再过2天,即n=6+2=8时,h=12+0.5×8=16(m),再过2天水位高度将达到16米.19.2正比例函数例1.A 练习:1.A 2.C 例2.y=-6x 练习1.-1 2.m=2 3.k=1 4.B 例3. 练习:1. 2.0 3.例4.-3 二、四练习:1. 4 一 三 2.D 3.C 4.k>2 5.C 6.D 7.A例5.B 练习:a ;< 17.二、四;减小. 18.二、四;﹣7;减小. 19.解:设正比例函数的解析式为y=kx(k≠0).∵它图象经过点P(﹣1,2),∴2=﹣k,即k=﹣2.∴正比例函数的解析式为y=﹣2x.又∵它图象经过点Q(﹣m,m+3),∴m+3=2m.∴m=3.20.(1)y=3x﹣5 (2)当y=1时,3x﹣5=1.解得x=221.y与x之间的函数表达式是.把x=2代入得:. 22.(1) (2)a每千瓦时0.5元 b每千瓦时0.9元 23.P1(,4)P2(,-4)19.3一次函数例1.B 练习:1.B 2. 例2.①③④⑤ 练习:1.C 2.B 例3.C 练习:1.≠-2;=1 2.B 例4.四 练习:1.A 2.B 例5.C 练习:1.> 2.一 3.C 4.A 5.A 6.A 7. 8.一 三 四 9. 10.三 例6.D 练习:1.C 2.D 3.B 4.A 例7.D 练习:B 例8.减小 练习:1.> 2. 3. 4.D 5.> 6.A 例9.D 练习:1.D 2.(1)k=9 (2)k=10 (3)k<9 (4)k=4 (5)k>3 例10. 练习:1. 2. 3. 4. 例11-练习:1.(1) (2)2.25 2.9 3.(2,0)(0,-4) 4课后巩固一、填空题1.(3,0)(0,6) 9 2、1 3.(1)4 2 (2)-2 4 (3)-6 -13 4. 2 5. 6. 7. 8.< 9.> > < < < > 10.二 11.(10,0)(0,-5) 12.(1)m<-2 (2)m≠-2 n <4 (3)m≠-2 n =4 二、选择题1-13:D A A B B C DCCBAAB三、解答题1.A在两个函数图像上,B在y=-3x+4图像上(图略)2.y=2x-2 3.3 4.(1) (2) 5.(1)(2)150km 3. 419.4一次函数与一次方程(组)例1、2 练习:1.(2,-1) 2.D 3.(1,0)4.x=1,y=7 ,K=3 5.(-2,0) 6.(1,3)例2.C 练习:1.4 2.x=3 3. 4.C 5.A 例3-练习:1.A 2.D 3.B 4. 5.K<0 例4.A 练习:1.B 2.B 3.k=9,15 例5-练习1.: 2.(1)C(2,2) (2) (3) 19.5一次函数与一次不等式D 练习:1.C 2.B 3.A 4.x>2 例2、C 练习:1.D 2.D 3.x>-1 4.D 5.D 6 .B 例3、33 6.x>1 7.B 8.x<4 9.A 10.x<-2 11.B 12.x>3 13.B 14.19.6一次函数的应用例1、(1)函数关系式为 (2)能印该读物12800册练习:(1) (2)至少100套例2、(1)(2)需售门票920张或1020张,相应地需支付成本费用分别为56000元或61000元。练习:(1)解析式分别为 , (2)当甲到达山顶时,乙距山顶的距离为 4km .(3)当乙达到山顶时,甲距山脚 6km .例3、(1) (2)这个有效时间为6小时。练习:(1)(2)∵50<60,∴只打了50次电话,则该月应付话费20元;∵100>60,∴打了100次电话,则该月小王应付话费20+0.13×40=25.2元;(3)该月通话的次数是120次。例4、(1)2h 10m (2)① ② (3)的值为4练习:(1)直线AB的解析式为.当x=0时,y=280.甲乙两地之间的距离为280千米。(2)3.5小时 (3)例5、(1)所求a的值为40 (2)售票到第60分钟时,售票厅排队等候购票的旅客有220人(3)需同时开放6个售票窗口。练习:(1)120;2.(2)点P的坐标为(1,30).该点坐标的意义为:两船出发1h后,甲船追上乙船,此时两船离B港的距离为30km。(3)当⩽x⩽时或当⩽x⩽3时,甲、乙两船可以相互望见。例6、(1)一次函数的解析式为.(2)当x=84时,W取得最大值,最大值是:−(84−90)2+900=864(元).即销售价定为每件84元时,可获得最大利润,最大利润是864元。练习:(1)(2)当x=44时,ymax=3820,即生产N型号的时装44套时,该厂所获利润最大,最大利润是3820元.例7、(1)工厂可有三种生产方案,分别为方案一:生产A产品30件,生产B产品20件;方案二:生产A产品31件,生产B产品19件;方案三:生产A产品32件,生产B产品18件;选择方案三可获利最多,最大利润为19100元。练习:(1)设购进甲种商品x件,乙种商品(20−x)件,根据题意得190⩽12x+8(20−x)⩽200,解得7.5⩽x⩽10,∵x为非负整数,∴x取8,9,10,有三种进货方案:①购甲种商品8件,乙种商品12件;②购甲种商品9件,乙种商品11件;③购甲种商品10件,乙种商品10件。(2)设利润为w元,则w=(14.5−12)x+(20−x)×(10−8)=0.5x+40 (x=8,9,10),∴购甲种商品10件,乙种商品10件时,可获得最大利润,最大利润是45万元。(3)①全进甲,能购买3件,利润为(14.5−12)×3=7.5万元;②全进乙,能购买5件,利润为(10−8)×5=10万元;③甲进1件,同时乙进4件,利润为(14.5−12)×1+(10−8)×4=10.5万;④甲进2件,同时乙进2件,利润为2.5×2+2×2=9万元;⑤甲进3件,同时乙进1件,利润为2.5×3+2×1=9.5万元;所以购甲种商品1件,乙种商品4件时,可获得最大利润为10.5万元。例8、(1)A种型号服装每件90元,B种型号服装每件100元.(2)有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A型服装购进26件;B型服装购进12件,A型服装购进28件.练习:(1)由题意得:,故所求函数关系为;(2)根据题意可列不等式组解得28⩽x⩽30所以,方案有以下几种①A 28 B 22②A 29 B 21③A 30 B 20;(3)由第一问不难看出x值越大,y值越小因此方案③运费最少y=−0.3×30+40=31,所以,在这些方案中,③方案的总运费最少,最少运费是31万元。例9、(1)30⩽x⩽32.(2),当x=32时,y有最大值,且最大值是1320千元。练习:(1).(2)根据题意列出不等式得,且,解得200⩽x⩽250250×3+250×2⩽w⩽200×3+200×2+100×3,即1250⩽w⩽1300.例10、(1)因为工厂每月生产x件产品,每月利润为y万元,由题意得:选择方案一时,月利润为y1=x−0.55x−0.05x−20=0.4x−20(x>0),选择方案二时,月利润为y2=x−0.55x−0.1x=0.35x(x⩾0);(2)若y1>y2,即0.4x−20>0.35x,解得x>400,则当月生产量大于400件时,选择方案一所获得利润较大;则当月生产量等于400件时,两种方案所获得利润一样大;则当月生产量小于400件时,选择方案二所获得利润较大。练习:(1),(2)分为三种情况:若,则,解得:。当时,选择优惠方法①、②均可。若,即。当且为整数时,选择优惠方法②。若,即,当,且为整数时,选择优惠方法①。(3)最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔。课后巩固1.(1)每吨水的政府补贴优惠价2元,市场调节价为3.5元。(2)求函数关系式为:y= (3)小明家5月份水费70元。2.(1)2cm (2) (3)10个3.(1) (2)(3)个体车主4.(1)由图象可知,A. B两地的距离是300千米,甲车出发1.5小时到达C地;(2)(3)即乙车出发小时或3小时,两车相距150千米。5.(1)3,31 (2)加油前油箱剩油量y与行驶时间t的函数关系式是.(3)由图可知汽车每小时用油(50−14)÷3=12(升),所以汽车要准备油210÷70×12=36(升),因为45升>36升,所以油箱中的油够用.6.(1)符合题意的生产方案有两种:①生产A种产品25件,B种产品15件;②生产A种产品26件,B种产品14件。(2)一件A种产品的材料价钱是:7×50+4×40=510(元),一件B种产品的材料价钱是:3×50+10×40=550(元),方案①的总价钱是:25×510+15×550=21000(元),方案②的总价钱是:26×510+14×550=20960(元),由此可知:方案②的总价钱比方案①的总价钱少,所以方案②较优。即生产A种产品26件,B种产品14件较优。7.(1)加工方案有三种:①加工一般糕点24盒、精制糕点26盒;②加工一般糕点25盒、精制糕点25盒;③加工一般糕点26盒、精制糕点24盒。(2)按方案③加工利润最大,最大利润为24×1.5+26×2=88(元).8.(1)x取整数有:甲3 乙3,甲4 乙3,甲5 乙1,共有三种方案。(2)租车方案及其运费计算如下表。答:共有三种租车方案,其中第一种方案最佳,运费是5100元。9.(1)三种生产方案:方案一:生产A种产品30件,生产B种产品20件;方案二:生产A种产品31件,生产B种产品19件;方案三:生产A种产品32件,生产B种产品18件;(2)设生产A种产品x件,则生产B种产品(50−x)件,由题意,得由一次函数的性质知,y随x的增大而减小。因此,当x=30时,y取最大值,且ymax=45000.10.(1)该单位这个月用水未超过7立方米的用户最多可能有33户.11.(1).(2)根据题意,得:y⩾2x,∴150−x⩾2x,解得:x⩽50,又∵x⩾0,150−x⩾0,∴0⩽x⩽50,∴p=600x+1000(150−x),=−400x+150000.又∵p随x的增大而减小,并且0⩽x⩽50,∴−400×50+150000⩽p⩽−400×0+150000,即130000⩽p⩽150000.12.(1)根据题意得;(2)设实际医疗费为x元,根据题意得2600=x−y=x−(0.7x−350)=0.3x+350,解得x=7500.答:若自付医疗费2600元,则实际医疗费为7500元;(3)设实际医疗费为y元,根据题意得4100⩽y−(10000−500)×70%−(y−10000)×80%.解得y⩾13750.答:若自付医疗费4100元,则实际医疗费至少为13750元。第二十章 数据的分析20.1数据的集中趋势小关:78.65分 小兵:78.9分 例2. =597.5小时练习1、 =86.9 =87.5 乙被录取 2、答案 :165.5例3、(1)中位数210件、众数210件 (2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。例4、(1)1.2匹 (2)通过观察可知1.2匹的销售最大,所以要多进1.2匹,由于资金有限就要少进规格为2匹空调。练习:1. 众数90 中位数 85 平均数 84.62.(1)15,15,15;平均数、中位数或众数(2).16;5;4、5、6,众数、中位数例5、解:(1)甲的平均成绩为:(85+70+64)÷3=73,乙的平均成绩为:(73+71+72)÷3=72,丙的平均成绩为:(73+65+84)÷3=74,∴ 候选人丙将被录用.(2)甲的测试成绩为:(85×5+70×3+64×2)÷(5+3+2)=76.3,乙的测试成绩为:(73×5+71×3+72×2)÷(5+3+2)=72.2,丙的测试成绩为:(73×5+65×3+84×2)÷(5+3+2)=72.8, ∴ 候选人甲将被录用.练习:解:小王平时测试的平均成绩(分).所以(分).答:小王该学期的总评成绩应该为87.6分.例6-练习:解:(1) =50-15-20-5=10.(2)众数是15.平均数为×(5×10+10×15+15×20+20×5)=12.课后巩固1. 2. 3. 53人 4. 约3.33万元 5. 约35.5岁 6. 65.4分贝 7、9,8; 8. 22; 9.B; 10.C; 11.(1)15. (2)约97天 12.(1)约2091 、1500、1500(2)3288、1500、1500(3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。13.(1)3.2 (2)2.1 (3)中位数20.2数据的波动程度例1、6 例2、1.(1)甲、乙两种农作物的苗平均高度相同,均为10cm ;(2) ,,甲整齐.练习:1、段巍的成绩比金志强的成绩要稳定。答案: 2. >、乙;3. =1.5、=1.65、=1. 5、=0.65,乙机床性能好4. =10.9、S=0.02; =10.9、S=0.01选择小兵参加比赛。例2、解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则=30-7-7-5-7=4, 30÷5=6,故答案为:4,6;(2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定,故答案为:乙;由于<,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.练习:解:(分), (分). 甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知分,所以,.①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为,,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力.综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩.例3-练习:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为13,∴数据3x1,3x2,3x3,3x4,3x5的方差是13×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3。例4、A组极差:10 B组极差:10 , 练习:1.D 2.5 3.-5 4.-2或4课后巩固选择1.【答案】A【解析】10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为:49+492 =49;平均数=46+2×47+48+2×49+4×5010=48.6,方差= 110 [(46-48.6)2+2×(47-48.6)2+(48-48.6)2+2×(49-48.6)2+4×(50-48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A。2.【答案】D【解析】由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:110×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:(-8)2+(8-8)2+(8-9)2+(8-7)2+(8-8)2+(8-8)2+(8-9)2+(8-7)2+(8-8)2+(8-8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D。3.【答案】B【解析】∵乙的10次射击成绩不都一样,∴a≠0,∵乙是成绩最稳定的选手,∴乙的方差最小,∴a的值可能是0.020,故选:B。4.【答案】B【解析】甲同学四次数学测试成绩的平均数是14(87+95+85+93)=90,A错误;甲同学四次数学测试成绩的中位数是90分,B正确;乙同学四次数学测试成绩的众数是80分和90分,C错误;∵∴甲同学四次数学测试成绩较稳定,D错误,故选:B。二、解答题5.(1)x甲= 110(7+8+6+8+6+5+9+10+4+7)=7;=[(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;x乙=110(9+5+7+8+6+8+7+6+7+7)=7;= 110 [(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2;∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,∴乙同学的成绩较稳定,应选乙参加比赛。6.(1)甲的平均数= 110(585+596+…+601)=601.6,乙的平均数= 110(613+618+…+624)=599.3;(2)甲的极差为:613-585=28;乙的极差为:624-574=50;= 110 [(585-600)2+(596-600)2+…+(601-600)2]=65.84,= 110 [(613-600)2+(618-600)2+…+(624-600)2]=284.21。(3)甲的成绩较稳定,乙的最好成绩好。(4)若只想夺冠,选甲参加比赛;若要打破记录,应选乙参加比赛。7.(1)甲种电子钟走时误差的平均数是15(1-3-4+4+2)=0,乙种电子钟走时误差的平均数是:15(4-3-1+2-2)=0.(2)=15 [(1-0)2+(-3-0)2+…+(2-0)2]= 15×46=9.2,= 15 [(4-0)2+(-3-0)2+…+(-2-0)2]= 15×34=6.8,∴甲乙两种电子钟走时误差的方差分别是9.2s2和6.8s2;(3)因为乙的方差小于甲的方差,所以乙更稳定,故买乙种电子钟8.(1)x学生奶=3,x酸牛奶=80,x原味奶=40,金键酸牛奶销量高;(2)金键学生奶的方差=12.57;金键酸牛奶的方差=91.71;金键原味奶的方差=96.86,金键学生奶销量最稳定;(3)酸奶进80瓶,原味奶进40瓶,学生奶平时不进或少进,周末进一些.9.(1)将小勇成绩从小到大依次排列为580,590,596,597,597,630,631,中位数为597cm,将小明成绩从小到大依次排列为589,596,602,603,604,608,612中位数为603cm,小明成绩的平均数为:(589+596+602+603+604+608+612)÷7=602cm,小勇成绩的平均数为:(603+589+602+596+604+612+608)÷7=603cm,方差为:= 1 7 [(597-603)2+(580-603)2+…+(596-603)2]≈333cm2,= 1 7 [(603-602)2+(589-602)2+…+(608-60)2]≈49cm2,(2)从成绩的中位数来看,小明较高成绩的次数比小勇的多;从成绩的平均数来看,小勇成绩的“平均水平”比小明的高,从成绩的方差来看,小明的成绩比小勇的稳定;(3)在跳远专项测试以及之后的6次跳远选拔赛中,小明有5次成绩超过6米,而小勇只有两次超过6米,从成绩的方差来看,小明的成绩比小勇的稳定,选小明更有把握夺冠。(4)小勇有两次成绩分别为6.30米和6.31米,超过6.15米,而小明没有一次达到6.15米,故选小勇。d5080100150b25405075n(天)01234561212.51313.51414.515方案甲种车乙种车运费(元)一331000×3+700×3=5100二421000×4+700×2=5400三511000×5+700×1=5700
第十九章 一次函数19.1 函数与变量要点一:变量和常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量.详解:如在行程问题中,当速度保持不变时,行走的路程的长短随时间的变化而变化,那么在这一过程中,是常量,而和是变量. 当路程是个定值时,行走的时间随速度的变化而变化,那么在这一过程中,是常量,而和是变量. 注意:(1)变量和常量往往是相对的,对于不同的研究过程而言,其中的变量和常量是不相同的,变量和常量的身份是可以相互转换的,如:三者之间;(2)区分常量与变量,就是看某个变化过程中,该量的值是否可以改变(即是否会取不同的数值);(3)在讨论常量和变量的关系时要考虑变量的实际意义,如:长度,天数,身高不能为负数,人数必须是非负整数等. 要点二:函数的概念一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一的值与其对应,那么就说为自变量,为因变量,是的函数. 详解:例如,一列货车以的速度匀速行驶,如果行驶了,那么路程(). 这时的速度是不变的量,而和是变化着的量,可以在非负实数范围内取任意值,对于的每一个确定的值,必可以求出唯一的一个确定的路程与之相对应,因此路程是时间的函数. 注意:对函数概念的理解,主要应该抓住以下五点:(1)在某一个变化过程中必须有两个变量与. 如等. (2)对于自变量的取值,必须使代数式有意义. 如:中的自变量可以在实数范围内取值;如中的被开方数要满足. 另外,在实际问题中,自变量的取值必须使实际问题有意义. 如多边形的内角和是边数的函数,即,如果只是从代数式有意义的角度来考虑,是可以取任意实数的,但我们知道多边形的边数必须是大于2的正整数. (3)函数的实质揭示了两个变量之间的对应关系:每取一个值,都有唯一的值与之相对应,否则就不是的函数. (4)判断两个函数是不是同一个函数,应该从自变量的取值范围,函数的取值范围、函数解析式是否一致来判断. 如:①和②,其中①中的可以取任意实数,②中的取不等于0的实数,所以和不是同一个函数. (5)含有一个变量的代数式可以将这个变量和代数式看作两个变量,代数式是这个变量的函数. 如,我们可以将和看作两个变量,随的变化而变化,在实数范围内每取一个值,就有唯一的值与之对应,所以是的函数. 要点三:自变量的取值范围函数关系式中自变量的取值范围必须使函数解析式有意义. (1)当函数解析式是整式时,自变量的取值范围可取全体实数;(2)当函数解析式是分式(分母中含有字母)时,自变量的取值范围要使分母不等于零. (3)当解析式是偶次根式时,自变量必须使被开方数是非负数;(4)对于实际问题中的函数,除使解析式有意义外,还要使实际问题有意义;(5)自变量的取值范围可以是有限的或无限的,也可以是几个数或单独的一个数. 例如:中,自变量的取值范围是;中,自变量的取值范围是. (6)在一个函数关系式中,当自变量同时含在分式和二次根式中时,函数自变量的取值范围是使它们分别有意义的取值的公共部分. 要点四:函数值对于一个函数,当自变量时,我们可以求出与它对应的的值,我们就说这个值是时的函数值. 详解:(1)当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值,求相应的自变量的值就是解方程. (2)对于一个函数,可能有若干个函数值. 取不同的值,函数值可能不相等. 因此我们应该说明自变量取什么值时的函数值,如:函数,当时的函数值是,时的函数值就是0. 而不能简单地说函数的函数值是. 要点五:函数的表示方法函数的表示方法,一般有三种:解析式法、列表法和图象法,其中解析式法应用较多. 有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示. 详解:解析式(函数关系式):用来表示的函数关系式的数学式子叫做函数解析式或函数关系式,例如以前我们学过的代数式都是解析式. (1)解析式法:用解析式来表示函数关系的方法叫做解析式法. 解析式法能揭示变量之间的内在联系,便于我们研究、分析变化趋势,但较抽象,且并不是所有的函数都能列出解析式. 如:人的体重和时间之间的函数关系,就很难用解析式法来表示. (2)列表法:用表格来表示函数关系的方法,这种方法比较具体,但有时很难找出两个变量之间的内在联系. (3)图象法:用图象来表示函数关系的方法,这种方法直观,通过图象可以直观地发现两个变量之间的对应关系及变化发展趋势,但不精确. 三种方法各有优缺点,在学习应用中,应视具体情况,选择适当的表示法,或将三种方法结合适用. 要点六:图象的概念一般地,对于一个函数,如果你把自变量和函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点所组成的图形,就是这个函数的图象. 详解:如:对于函数,在坐标平面内描出的横坐标和纵坐标相等的点. 由几何知识(到一个角两边距离相等的点的轨迹是这个角的角平分线)知,这样的点组成的图形是一条直线(第一、三象限角平分线),这条直线就是函数的图象,如下图所示. 函数图象上的点的坐标与其解析式之间的关系:由函数图象的定义可知图象上任意一点中,是解析式方程的一个解. 反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上. 通常判定点是否在函数图象上的方法:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上;如果不满足函数解析式,这个点就不在函数的图象上. 说明:两个函数图象的交点,就是这两个函数解析式所组成的方程组的解. 由于实际问题的制约,自变量的取值范围,应符合以下条件:①使函数表达式有意义;②符合题意与实际情况. 要点七:由函数解析式画图象的一般步骤(1)列表:列出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出对应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来. 注意:用描点法画函数图象应注意以下几点:(1)列表时要根据自变量的取值范围取值,从小到大或自中间向两边选取,取值要有代表性,尽量使画出的函数图象能反映出函数的全貌. (2)描点时要以表中每对对应值为坐标,点取得越多,图象越准确. (3)连线时要用光滑的曲线把所描的点顺次连接起来. 函数的图象可以是直线或者是射线或线段或曲线,它形象直观地反映两个变量之间的对应关系,在确定函数图象时要注意自变量的取值范围. 类型一、常量、变量、自变量、因变量及函数关系式例1、写出下列各问题中所满足的关系式,并指出各关系式中,哪些是常量,哪些是变量. (1)购买单价是0.4元的铅笔,总金额(元)与购买的铅笔之间的关系;(2)运动员在一周的跑道上训练,他跑一圈所用的时间与跑步速度的关系. 解析:(1)与之间的关系式为:,其中,常量为0.4,变量为和. (2)与之间的关系式为: ,其中,常量为400,变量为与. 类型二、判断是否是函数关系例2、判断下面变量之间的关系是不是函数关系:(1)已知圆的半径,则圆的面积;(2)长方形的宽一定时,其长与周长;(3)王明的年龄和他的身高. 练习:下列式子中的y是x的函数吗?为什么?(1);(2) ;(3) (4) ;(5);(6) 例3、下列各图象中,y不是x的函数的是( )A B C D练习:下列图象中,表示y是x的函数的是( ) OyxOyxOyxOyx A B C D 例4、下列函数中与表示同一函数的是( )A. B. C. D.提示:表示同一函数,自变量的取值要相同,化简后的解析式要相同.类型三、函数自变量的取值范围例5、函数中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3解析:求x的取值范围,可根据题目要求列出下列式子: 解得x≤2且x≠3, 故选A练习:求下列函数中自变量的取值范围:(1); (2); (3);(4); (5); (6).类型四、写出函数关系式例6、已知等腰三角形的周长为,设底边长为,腰长为,试写出关于的函数关系式,并确定的取值范围. 若底边长为,求腰长是多少?解析:由题意得,,所以. 由解析式本身有意义,得为全体实数. 又由使实际问题有意义,则要考虑边长为正数,且要满足三角形三边关系定理. 所以有:即,解得. 当时,,解得. 所以腰长是. 例7、已知:函数,当时,. (1)求的值;(2)当时,求的值. 类型五、函数与图象例8、如图,圆柱形开口杯的底部固定在长方体池底,向水池匀速注入水(倒在杯外),水池中水面高度是h,注水时间是t,则h与t之间的关系大致为下面图中的( )解析:由题意知,此注水过程中分为三段:⑴由于圆柱形开口杯底部固定在长方体水池,也就是说水池被开口杯占据了一部分空间,因此注水时水池中水面上升的速度较快,其图象是一段自原点出发较陡的上升线段;⑵当水的与开口杯口等高时,水开始注入开口杯,也就是说水池中水面高度不变,则其图象是一段平行于t轴的水平线段;⑶当开口杯注满时,水位开始上升,由于水池的此部分空间比⑴段大,因此水池中水面上升的速度要比⑴段速度慢,则其图象是一段比⑴段中上升线段较缓的上升线段,由此可知答案应选B.练习:1、如图所示,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h与注水时间t的函数关系式,大致是下列图象中的( )2、某蓄水池的横截面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是( )3、用均匀的速度向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图表示(图中OAB为一折线),这个容器的形状是下图中的( )4、小明晚饭后出去散步,从家里出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明离家的距离(米)与离家的时间(分)之间的函数关系式是( )A BC D例9、如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象,如图2,若AB=6cm,则下列四个结论中正确的个数有( )①图1中的BC边长是8cm②图2中的M点表示第4秒时y的值为24③图1中的CD长是4cm④图2中的N点表示第12秒时y的值为18cm21个 B.2个 C.3个 D.4个解析:从图1和图2的对应情况可知:(1)由G到C运动2秒,可得GC4cm,即BC8cm;∴①正确(2)∵S△ABD,则M的纵坐标为24;∴②正确(3)∵P在CD上的时间从图2知为2秒;∴; ∴③正确(4)∵,,则点Q对应的时间t8. ∵点P从点F到点H运动的距离FH2×(12−8)8cm, ∴AHBC+DE−FH8+6−86cm, ∴图2中的N点表示第12秒时,点P到达H点,△ABP的面积是×6×618cm2. ∴④正确 故选D.练习:1、如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到的位置是( )A.N处 B.P处 C.Q处 D.M处2、如图1,在直角梯形ABCD中,动点P以每秒1个单位从点B出发,沿BC、CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是( )A.3 B.4 C.5 D.6例10、画出函数的图象. 1. 下列关于圆的面积与半径之间的函数关系中,有关常量和变量的说法正确的是( )A. ,是变量,是常量 B. ,是变量,2是常量C. ,是变量,是常量 D. ,是变量,和2是常量2. 下表是一项试验的统计数据,表示皮球从高度d处落下时,弹跳高度b的关系下落高度d与弹跳高度b变化的关系式是( )A. B. C. D. 3. 下列各式,不能表示y是x的函数的是( )A. y3x2 B. C. (x>0) D. y3x+14. 下列曲线中,y不是x的函数的是( )5. 函数的自变量的取值范围是( )A. B. 且C. D. 且6. 下图是古代一种计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画有刻度,人们根据壶中水面的位置计算时间,若用表示时间,表示壶底水面的高度,下列的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)( )A B C D7. 如图,在矩形中,,,点从起点出发,沿方向向终点匀速运动. 设点走过的路程为,则线段与矩形围成的图形的面积为,下列图象中能大致反映和函数关系的是( )A B C D8. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,图中描述了他上学的情景,下列说法错误的是( )A.修车时间为15分钟 B.学校离家的距离为2000米C.到达学校时共用时间20分钟 D.自行车发生故障时离家距离为1000米9. 由于干旱,某水库的蓄水量随时间的增加而直线下降,若该水库的蓄水量V(万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是( )A.干旱开始时,蓄水量每天减少20万米3 B.干旱开始后,蓄水量每天增加20万米3 C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1200万米310. 一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,现时打开丙,直到水池中的水排空,水池中的水量V (m3)与时间T (h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是( )A.乙>甲 B.丙>甲 C.甲>乙 D.丙>乙11. 已知点P(x,y)在函数的图象上,那么点P应在平面直角坐标系中的( )A.第一象限 B.第二象限 C.第三象限 D.第四象限12. 函数的自变量x的取值范围是( )A. B.且 C.且 D.且13. 甲、乙两人在一次赛跑中,路程s与时间t的关系式如图所示,那么你可知道:(1)这是一次 米的赛跑;(2)甲、乙两人中先跑到终点的是 ;(3)乙在这次赛跑中的速度为 米/秒.14. △ABC底边BC上的高是6cm,当三角形的顶点C沿底边BC向点B运动时,三角形的面积发生了变化,如图所示.(1)如果三角形的底边BC长为x cm,那么三角形的面积y cm2可以表示为 ;(2)在这个变化过程中,常量是 ,变量是 ;(3)当底边长从12cm变化到3cm时,三角形的面积从 cm2变化到 cm2.15. 已知某一函数的图象如图所示,根据图象回答下列问题.(1)确定自变量的取值范围;(2)求当时,y的值是多少?(3)求当y0,4时,x的值是多少?(4)当x取何值时y的值最大?当x取何值时y的值最小?(5)当x在什么范围内取值时y随x的增大而增大?当x在什么范围内取值时y随x的增大而减小?如下图,在长方形中,是边上与点不重合的动点,过点的直线交的延长线于点,交于点(与不重合),且45°,设,梯形的面积为,求当时,和之间的函数关系式. 17. 一水库的水位在最近6天内持续上涨,记录数据如下表所示:(1)由记录表推出这6天中水位随时间n (天)变化的函数解析式,并画出函数图象;(2)据估计这种上涨的势头还会持续2天,试预测再过2天水位将达到多少米.八下第一本答案第十八章 平行四边形18.1 平行四边形的性质例1、A 练习:1.B 2.B 3.答案不唯一. BE=DF或BF=DE或∠BCE=∠DAF或AF∥EC等 4.C 例2、D 练习:B 例3、28 13 82 练习:AB=14cm AD=10cm 例4-练习:4cm例5:证明:∵ABCD,∴OA=OC,DF∥EB,∴∠E=∠F,又∵∠EOA=∠FOC,∴△OAE≌△OCF(AAS),∴OE=OF.练习:DE=BF.证明如下:∵ABCD,O为AC的中点∴OA=OC.又AE∥CF,∴∠EAO=∠FCO.故在△AOE与△COF中,∴△AOE≌△COF(ASA),∴AE=CF.又∵AD=CB(平行四边形的对边相等),∴AE−AD=CF−CB,即DE=BF.例6:AB=4cm,BC=6cm,平行四边形ABCD面积为cm2例7:证明:设:CE、DF相交于M∵平行四边形ABCD ∴AB∥CD AD=BC又∵AD=2AB,且AE=AB ∴BC=BE ∴∠E=∠ECB∵AB∥CD ∴∠E=∠ECD ∴∠ECD=∠ECB=∠BCD同样道理: ∠FDC=∠FDA=∠ADC∵平行四边形ABCD中AD∥BC ∴∠ADC+∠BCD=180º∴∠ECD+∠FDC=(∠BCD+∠ADC)=90º即∠MCD+∠MDC=90º ∴∠DMC=90º∴CE⊥DF课后巩固一、选择题1-4、BDAD 5、80° 6、3;6 7、150°;30° ;150° 8、49 9、9 10. BE =DF 证明略.11. 9cm12证明:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO(平行四边形的对角线互相平分),∴∠EAO=∠FCO,∠AEO=∠CFO,∴△AOE≌△COF,∴OE=OF.13.答案:(1)解:有4对全等三角形.分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA.(2)证明:如图,∵OA=OC,∠1=∠2,OE=OF. ∴△OAE≌△OCF,∴∠EAO=∠FCO. 在ABCD中,AB∥CD,∴∠BAO=∠DCO.∴,即∠EAM=∠FCN.14.证明:∵四边形ABCD是平行四边形, ∴AB=CD, ∵AD∥BC, ∴∠1=∠2. ∵AF=CE, ∴AE=CF, 在△ABE和△CDF中,AB=CD,∠1=∠2,AE=CF,∴△ABE≌△CDF.18.2 平行四边形的判定例1-练习:点拨:欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG∥HE可用来证明四边形EGFH为平行四边形. 证明:∵ 四边形AECF为平行四边形, ∴ AF∥CE. ∵ 四边形DEBF为平行四边形, ∴ BE∥DF.∴ 四边形EGFH为平行四边形.2.证明:在等边△ADC和等边△AFB中 ∠DAC=∠FAB=60°. ∴ ∠DAF=∠CAB.又∵ AD=AC,AF=AB.∴ △ADF≌△ACB(SAS). ∴ DF=CB=CE. 同理,△BAC≌△BFE,∴ EF=AC=DC. ∴ 四边形DCEF是平行四边形(两组对边分别相等的四边形是平行四边形).3.证明:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AB∥DC, ∴∠ABE=∠CDF, ∵AG=CH, ∴BG=DH, 在△BEG和△DFH中, ∴△BEG≌△DFH(SAS); (2)∵△BEG≌△DFH(SAS), ∴∠BEG=∠DFH,EG=FH, ∴∠GEF=∠HFB, ∴GE∥FH, ∴四边形GEHF是平行四边形. 4.分析:因为题设与四边形内角有关,故考虑四边形的两组内角相等解决问题。解:(1)四边形ABCD是平行四边形,理由如下:∠ABC=∠ABD+∠DBC=30°+90°=120°,∠ADC=∠ADB+∠CDB=90°+30°=120°又∠A=60°,∠C=60°,∴∠ABC=∠ADC,∠A=∠C∴四边形ABCD是平行四边形(2)四边形ABC1D1是平行四边形,理由如下:将Rt△BCD沿射线方向平移到Rt△B1C1D1的位置时,有Rt△C1BB1≌Rt△ADD1∴∠C1BB1=∠AD1D,∠BC1B1=∠DAD1∴有∠C1BA=∠ABD+∠C1BB1=∠C1D1B1+∠AD1B=∠AD1C1,∠BC1D1=∠BC1B1+∠B1C1D1=∠D1AD+∠DAB=∠D1AB所以四边形ABC1D1是平行四边形例2、解答:证明:连接BF,∵△ADF和△ABC是等边三角形,∴AF=AD=DF,AB=AC=BC,∠ABC=∠ACD=∠CAB=∠FAD=60∘,∴∠FAD−∠EAD=∠CAB−∠EAD,∴∠FAB=∠CAD,在△FAB和△DAC中AF=AD,∠FAB=∠CAD,AB=AC,∴△FAB≌△DAC(SAS),∴BF=DC,∠ABF=∠ACD=60∘,∵BE=CD,∴BF=BE,∴△BFE是等边三角形,∴EF=BE=CD,在△ACD和△CBE中∵CA=BC,∠ACB=∠ABC,CD=BE∴△ACD≌△CBE(SAS),∴AD=CE=DF,∵EF=CD,∴四边形CDFE是平行四边形。练习:(1)易证 (2)DE=例3、解答:在四边形AECF中,∵ ∠EAF=60°,AE⊥BC,AF⊥CD, ∴ ∠C=360°-∠EAF-∠AEC-∠AFC=360°-60°-90°-90°=120°. 在ABCD中,∵ AB∥CD,∴ ∠B+∠C=180°.∠C+∠D=180°,∴ ∠B=∠D=60°. 在Rt△ABE中,∠B=60°,BE=2cm, ∴ AB=4cm,CD=AB=4cm.(平行四边形的对边相等) 同理,在Rt△ADF中,AD=6cm,∴ BC=AD=6cm, ∴ ∴ .练习:解:平移线段AM至BE,连EA,则四边形BEAM为平行四边形∴BE=AM=9,ED=AE+AD=15,又∵BD=12∴∠EBD=90°,BE⊥BD, ∴△EBD面积=又∵2AE=AD∴△ABD面积==36∴ABCD的面积=72.例4、解:延长BD交AC于点N. ∵ AD为∠BAC的角平分线,且AD⊥BN, ∴ ∠BAD=∠NAD,∠ADB=∠ADN=90°, 又∵ AD为公共边,∴ △ABD≌△AND(ASA) ∴ AN=AB=12,BD=DN. ∵ AC=18,∴ NC=AC-AN=18-12=6, ∵ D、M分别为BN、BC的中点, ∴ DM=CN==3.练习:B;解: 连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴ 线段EF的长度将保持不变.例5-练习:证明:如图,过M作ME∥AN,使ME=AN,连NE,BE,则四边形AMEN为平行四边形,∴NE=AM,ME⊥BC, ∵ME=AN=CM,∠EMB=∠MCA=90∘,BM=AC,∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2,∠3=∠4,∵∠1+∠3=90∘,∴∠2+∠4=90∘且BE=NE,∴△BEN为等腰直角三角形,∠BNE=45∘,∵AM∥NE,∴∠BPM=∠BNE=45∘.课后巩固1、解:(1)选证△BDE≌△FEC证明:∵△ABC是等边三角形,∴BC=AC,∠ACD=60°∵CD=CE,∴BD=AE,△EDC是等边三角形∴DE=EC,∠CDE=∠DEC=60°∴∠BDE=∠FEC=120°又∵EF=AE,∴BD=FE,∴△BDE≌△FEC(2)四边形ABDF是平行四边形理由:由(1)知,△ABC、△EDC、△AEF都是等边三角形∵∠CDE=∠ABC=∠EFA=60°∴AB∥DF,BD∥AF∵四边形ABDF是平行四边形。2、解:(1)∵ABCD是正方形,∴∠BCD=∠DCE=90°又∵CG=CE,△BCG≌△DCE(2)∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′,∵CE=CG,∴CG=AE′,∵四边形ABCD是正方形∴BE′∥DG,AB=CD∴AB-AE′=CD-CG,即BE′=DG∴四边形DE′BG是平行四边形点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形3、分析:因为题设条件是从四个顶点向对角线引垂线,这些条件与四边形EFGH的对角线有关,若能证出OE=OG,OF=OH,则问题可获得解决。证明:∵AE⊥BD,CG⊥BD,∴∠AEO=∠CGO,∵∠AOE=∠COG,OA=OC∴△AOE≌△COG,∴OE=OG同理△BOF≌△DOH∴OF=OH∴四边形EFGH是平行四边形4、四边形DEBF是平行四边形;理由是:连接BD,∵四边形ABCD是平行四边形,∴AO=CO,DO=BO;∵AE=CF,∴AO−AE=CO−CF,∴EO=FO,又∵DO=BO,∴四边形DEBF是平行四边形。5、证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD−ED=BC−BF,即AE=CF,在△AEO和△CFO中,⎧AE=CF ∠AEO=∠CFO ∠FCO=∠EAO,∴△AEO≌△CFO,∴OA=OC.6、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠F=∠E,∠FDO=∠EBO,又∵CF=AE,∴ED=BF,∴△EOD≌△FOB.∴OD=OB,OF=OE.即EF与BD互相平分。7、(1)易证 (2)由(1)可知AD=BC ∠DAF=∠BCE ∴AD∥BC ∴四边形ABCD是平行四边形8、∵BE是∠ABC的平分线,∠ABC=70∘,∴∠ABE=∠CBE=35∘,∠ADC=∠ABC=70∘,在ABCD中,∵AD∥BC,∴∠EBF=∠AEB=35∘,∵DF∥BE,∴∠ADF=∠AEB=35∘,∴∠CDF=35∘.9、证明:∵四边形ABCD是平行四边形,∴AD∥BC, ∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE∴∠ABE=∠AEB,∴AB=AE,∵CE⊥BE,∴∠EBC+∠ECB=90° ∵∠ABC+∠DCB=180°∴∠ABE+∠DCE=90°,∴∠BCE=∠DCE,同理得:CD=DE,∵AD=AE+ED=AB+CD=2CD,∴BC=2CD10、(1)证明:当∠AOF=90∘时,∵∠BAO=∠AOF=90∘,∴AB∥EF,又∵AF∥BE,∴四边形ABEF为平行四边形。(2)证明:∵四边形ABCD为平行四边形,在△AOF和△COE中∠FAO=∠ECO AO=CO ∠AOF=∠COE.∴△AOF≌△COE(ASA).∴AF=EC. 11、证明:连接BD,交AC于点O.∵四边形ABCD和EBFD均是平行四边形,∴OA=OC,OE=OF,∠ACD=∠BAC即∠FCD=∠EAB∴OA-OE=OC-OF,即AE=CF.∴在△ABE和△CDF中,∴△ABE≌△CDF(SAS)12、证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,DC∥AB.∵AE=CF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB,DE=BF.∵DC∥AB,∴∠CFB=∠ABF.∴∠AED=∠ABF.∴ME∥FN.又∵M、N分别是DE、BF的中点,且DE=BF,∴ME=FN.∴四边形ENFM是平行四边形。13、证明:∵ABCD,∴AB∥CD,BC∥AD,又∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∵AB=CD,∴BF=DE,∵BF∥DE,∴四边形BFDE是平行四边形,∴FG∥HE,∵GE∥FH,∴四边形EGFH是平行四边形,∴EG=FH特殊平行四边形类型一、矩形的性质例1、解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.练习:A例2、(1)证明:在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.∴∠EBF=∠DCF,∠BEF=∠CDF.∵AB=BE,∴BE=CD.在△ABD与△BEC中,∠EBF=∠DCF BE=CD ∠BEF=∠CDF,∴△BEF≌△CDF.(2)由(1)知,四边形BECD为平行四边形,则FD=FE,FC=FB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠FCD.又∵∠BFD=2∠A,∠BFD=∠FCD+∠FDC,∴∠FCD=∠FDC,∴FC=FD,∴FC+FB=FD+FE,即BC=ED,∴四边形BECD为矩形.例3、解析:证明:在ABCD中,AD∥BC, ∴ ∠BAD+∠ABC=180°, ∵ AE、BE分别平分∠BAD、∠ABC, ∴ ∠BAE+∠ABE=∠BAD+∠ABC=90°. ∴ ∠HEF=∠AEB=90°. 同理:∠H=∠F=90°.∴ 四边形EFGH是矩形.例4、证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,BC=AD.∵E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF.∴△BEC≌△DFA.(2)四边形AECF是矩形.∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD.∵E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴AE∥CF且AE=CF.∴四边形AECF是平行四边形.∵CA=CB,E是AB的中点,∴CE⊥AB,即∠AEC=90°.∴四边形AECF是矩形.例5、C;解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.练习:连接OP. ∵ 四边形ABCD是平行四边形. ∴ AO=CO,BO=DO, ∵ ∠APC=∠BPD=90°,∴ OP=AC,OP=BD,∴ AC=BD.∴ 四边形ABCD是矩形.课后巩固1-4:DDBC5.; 6. 30或14; 7.12; 8.;9.(1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF(ASA);(2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴ABCD是矩形.10.证明:(1)由折叠可得.∵ AD∥BC, ∴ ,∴ ,∴ .(2)猜想.理由:由题意,得,.由(1)知.在中,∵ ,,,,∴ .11、(1)证明:∵∠BAD=∠CAE, ∴∠EAB=∠DAC, 在△ABE和△ACD中 ∵AB=AC,∠EAB=∠DAC,AE=AD ∴△ABE≌△ACD(SAS); (2)证明:∵△ABE≌△ACD, ∴BE=CD, 又DE=BC, ∴四边形BCDE为平行四边形. ∵AB=AC, ∴∠ABC=∠ACB ∵△ABE≌△ACD, ∴∠ABE=∠ACD, ∴∠EBC=∠DCB ∵四边形BCDE为平行四边形, ∴EB∥DC, ∴∠EBC+∠DCB=180°, ∴∠EBC=∠DCB=90°, 四边形BCDE是矩形.12、证明:连接EG、DG,∵ CE是高, ∴ CE⊥AB. ∵ 在Rt△CEB中,G是BC的中点, ∴ EG=BC,同理DG=BC. ∴ EG=DG. 又∵ F是ED的中点, ∴ FG⊥DE.18.3.2菱形例1、证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.练习:1、50°;解:在菱形ABCD中,AB∥CD,∴∠CDO=∠AED=50°,CD=CB,∠BCO=∠DCO,∴在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠CDO=50°.2、C;例2、解:四边形DECF是菱形,理由如下: ∵ DE∥AC,DF∥BC ∴ 四边形DECF是平行四边形. ∵ CD平分∠ACB,∴ ∠1=∠2 ∵ DF∥BC, ∴ ∠2=∠3, ∴ ∠1=∠3.∴ CF=DF,∴ 四边形DECF是菱形.例3: 解:四边形AEDF是菱形,理由如下: ∵ EF垂直平分AD, ∴ △AOF与△DOF关于直线EF成轴对称. ∴ ∠ODF=∠OAF, 又∵ AD平分∠BAC,即∠OAF=∠OAE, ∴ ∠ODF=∠OAE.∴ AE∥DF, 同理可得:DE∥AF. ∴ 四边形AEDF是平行四边形,∴ EO=OF 又∵AEDF的对角线AD、EF互相垂直平分. ∴AEDF是菱形.例4、解析:(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.练习1.(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,∵EF垂直平分AC,垂足为O,∴OA=OC,∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形,②设菱形的边长AF=CF=xcm,则BF=(8−x)cm,在Rt△ABF中,AB=4cm,由勾股定理得42+(8−x)2=x2,解得x=5,∴AF=5cm.(2)①显然当P点在AF上时,Q点在CD上,此时A. C. P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形。因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A. C. P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=CD+AD−4t=12−4t,即QA=12−4t,∴5t=12−4t,解得t=,∴以A. C. P、Q四点为顶点的四边形是平行四边形时,t=秒。②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上。分三种情况:i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12−b,得a+b=12;ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12−b=a,得a+b=12;iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12−a=b,得a+b=12.综上所述,a与b满足的数量关系式是a+b=12(ab≠0).2.解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形 ∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a ∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM, ∴四边形AQMP为菱形课后巩固1、解析: 证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC, ∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°. ∵ ∠1=∠2, ∴ ∠3=∠4. ∵ EF⊥BC,AD⊥BC,∴ EF∥AD. ∴ ∠4=∠5.∴ ∠3=∠5.∴ AE=AG又 EF∥AG. ∴ 四边形AEFG是平行四边形. 又∵ AE=AG, ∴ 四边形AEFG是菱形. 方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC, ∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°. ∴ ∠3=∠4. ∵ EF⊥BC,AD⊥BC,∴ EF∥AD. ∴ ∠4=∠5.∴ ∠3=∠5. ∴ AE=AG. 在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG, ∴ △AEG≌△FEG. ∴ AG=FG. ∴ AE=EF=FG=AG. ∴ 四边形AEFG是菱形.2.证明:(1)ABCD中,AB∥CD,AB=CD ∵ E、F分别为AB、CD的中点 ∴ DF=DC,BE=AB ∴ DF∥BE.DF=BE ∴ 四边形DEBF为平行四边形 ∴ DE∥BF (2)证明:∵ AG∥BD ∴ ∠G=∠DBC=90° ∴ △DBC为直角三角形 又∵ F为边CD的中点. ∴ BF=DC=DF 又∵ 四边形DEBF为平行四边形 ∴ 四边形DEBF是菱形3.解析: 解:连接AC. ∵ 四边形ABCD是菱形, ∴ AB=BC,∠ACB=∠ACF. 又∵ ∠B=60°, ∴ △ABC是等边三角形. ∴ ∠BAC=∠ACB=60°,AB=AC. ∴ ∠ACF=∠B=60°. 又∵ ∠EAF=∠BAC=60° ∴ ∠BAE=∠CAF. ∴ △ABE≌△ACF. ∴ AE=AF. ∴ △AEF为等边三角形. ∴ ∠AEF=60°. 又∵ ∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°, ∴ ∠CEF=18°.4.C.解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF′=DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.5、解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16. 6、解答:(1)证明:∵D,E分别是AB,AC的中点,∴DE∥BC,2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC=BE,∴四边形BCFE是菱形。(2)∵四边形BCFE是菱形,∠BCF=120∘,∴∠ACB=60∘,∵BC=BE,∴△BEC是等边三角形,∴∠BEC=60∘,∵E是AC的中点,CE=4,∴AE=EC=BE=4,∴∠A=30∘,∴∠ABC=180∘−∠ACB−∠A=90∘.在Rt△ABC中,AB2=AC2−BC2,AB=18.3.3正方形例1、C.解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.练习:1、证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°∵E为BC延长线上的点,∴∠DCE=90°,∴∠BCD=∠DCE.在△BCF和△DCE中,,∴△BCF≌△DCE(SAS),∴BF=DE.2.B;提示:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;例2-练习:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90∘,∴四边形ADCE为矩形。(2)当△ABC满足∠BAC=90∘时,四边形ADCE是一个正方形。理由:∵AB=AC,∴∠ACB=∠B=45∘,∵AD⊥BC,∴∠CAD=∠ACD=45∘,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形。∴当∠BAC=90∘时,四边形ADCE是一个正方形。例3、证明:(1)∵AD=CD,点E是边AC的中点,∴DE⊥AC.即得DE是线段AC的垂直平分线.∴AF=CF.∴∠FAC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠FAC+∠BAF=90°.∴∠B=∠BAF.∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵点E是边AC的中点,∴AE=CE.在△AEG和△CEF中,,∴△AEG≌△CEF(AAS).∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF.即得点F是边BC的中点.又∵AB=AC,∴AF⊥BC.即得∠AFC=90°.∴四边形AFCG是正方形.例4、证明:(1)延长DC,使CH=AE,连接BH,∵ 四边形ABCD是正方形,∴ ∠A=∠BCH=90°,又AB=BC,CH=AE,∴ Rt△BAE≌Rt△BCH,∴ ∠1=∠2,BE=BH.又∵ ∠1+∠3+∠4=90°,∠4=45°,∴ ∠1+∠3=45°,∠2+∠3=45°,在△EBF和△HBF中∴ △EBF≌△HBF,∴ EF=FH=FC+CH=AE+CF.即AE+CF=EF. (2)如图所示:不成立,正确结论:EF=CF-AE.证明:在CF上截取CH=AE,连接BH.∵ 四边形ABCD是正方形,∴ 在Rt△EAB和Rt△HCB中,∴ Rt△EAB≌Rt△HCB,∴ BE=BH,∠EBA=∠HBC.∵ ∠HBC +∠ABH=90°,∴ ∠EBA +∠ABH=90°.又∵ ∠EBF=45°,∴ ∠HBF=45°,即∠EBF=∠HBF.在△EBF和△HBF中∴ △EBF≌△HBF,∴ EF=FH=CF-CH=CF-AE,即EF=CF-AE. 练习: 证法一:(间接折半法)如图①所示. ∵ ∠3=∠1+∠4,∠5=∠2+∠6. 而∠1=∠2,∠4=∠6=45°. ∴ ∠3=∠5,BE=BF. 取AE的中点G,连接OG, ∵ AO=OC,∴ OG EC. 由∠7=∠5,∠8=∠3, ∴ ∠7=∠8,∴ FO=GO. ∴ EC=2OG=2FO. 证法二:(直接折半法)如图②所示. 由证法一得BE=BF. 取EC的中点H,连接OH. ∵ AO=OC,∴ OH∥AE. ∴ ∠BOH=∠BFE=∠BEF=∠BHO. ∴ BO=BH,∴ FO=EH. ∴ EC=2EH=2FO. 证法三:(直接加倍法)如图③所示. 由证法一得BE=BF.在OD上截取OM=OF,连接MC.易证Rt△AOF≌Rt△COM.∴ ∠OAF=∠OCM,∴ AE∥MC. 由∠BMC=∠BFE=∠BEF=∠BCM, ∴ FM=EC.∴ EC=FM=2FO.例5、(1)等腰(2)如图①,连接BE,画BE的中垂线交BC与点F,连接EF,△BEF是矩形ABCD的一个折痕三角形。∵折痕垂直平分BE,AB=AE=2,∴点A在BE的中垂线上,即折痕经过点A.∴四边形ABFE为正方形。∴BF=AB=2,∴F(2,0).(3)矩形ABCD存在面积最大的折痕三角形BEF,其面积为4,理由如下:i、当F在边OC上时,如图②所示。,即当F与C重合时,面积最大为4.ii、当F在边CD上时,如图③所示,过F作FH∥BC交AB于点H,交BE于K.∵∴即当F为CD中点时,△BEF面积最大为4.下面求面积最大时,点E的坐标。i、当F与点C重合时,如图④所示。由折叠可知CE=CB=4,在Rt△CDE中,∴∴E(,2).ii、当F在边DC的中点时,点E与点A重合,如图⑤所示。此时E(0,2).综上所述,折痕△BEF的最大面积为4时,点E的坐标为E(0,2)或E(,2)..例6、解:(1)EG=CG,且EG⊥CG.(2)EG=CG,且EG⊥CG. 证明:延长FE交DC延长线于M,连MG,如图③, ∵ ∠AEM=90°,∠EBC=90°,∠BCM=90°, ∴ 四边形BEMC是矩形. ∴ BE=CM,∠EMC=90°, 又∵ BE=EF,∴ EF=CM. ∵ ∠EMC=90°,FG=DG, ∴ MG=FD=FG. ∵ BC=EM,BC=CD,∴ EM=CD. ∵ EF=CM,∴ FM=DM,∴∠F=45°. 又FG=DG,∠CMG=∠EMD=45°, ∴ ∠F=∠GMC,∴ △GFE≌△GMC,∴ EG=CG,∠FGE=∠MGC,∵ MG⊥DF,∴ ∠FGE+∠EGM=90°,∴ ∠MGC+∠EGM=90°即∠EGC=90°,∴ EG⊥CG.课后巩固1-5:DADBB 6.7 7.13 8.128 9.(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.10.(1)BE的长为 (2)证明:在FE上截取一段FI,使得FI=EH,∵由(1)知,△ADE≌△CDF,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°=∠DBC,∵∠DHE=∠BHF,∴∠EDH=∠BFH(三角形的内角和定理),在△DEH和△DFI中,DE=DF,∠DEH=∠DFI,EH=FI∴△DEH≌△DFI(SAS),∴DH=DI,又∵∠HDE=∠BFE,∠ADE=2∠BFE,∴∠HDE=∠BFE=∠ADE,∵∠HDE+∠ADE=45°,∴∠HDE=15°,∴∠DHI=∠DEH+∠HDE=60°,即△DHI为等边三角形,∴DH=HI,∴HF=FI+HI=HE+HD,即HF=HE+HD.11.(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG•FQ=×2×2=2.平行四边形单元测试1.C 2.D 3.B 4.C 5.D 6.C 7.A 8.B 9.A 10.D 11.B 12.A 13.60°,120° 14.3215.5 16.8 17.218.证明:因为四边形ABCD是平行四边形,所以AD=BC,AD∥BC,∠BAD=∠BCD,所以∠ADB=∠CBD,因为AF平分∠BAD,所以∠DAF=∠BAD,因为CE平分∠BCD,所以∠BCE=∠BCD,所以∠DAF=∠BCE,在△DAF和△BCE中,所以△ADF≌△CBE(ASA),所以AF=CE,∠AFD=∠CEB,所以AF∥CE,所以四边形AFCE是平行四边形.19.(1)证明:因为四边形ABCD是矩形,所以OB=OD(矩形的对角线互相平分),AE∥CF(矩形的对边平行),所以∠BEO=∠DFO,∠OBE=∠ODF,在△BOE与△DOF中,所以△BOE≌△DOF(AAS).(2)解:当EF⊥AC时,四边形AECF是菱形,证明:连接AF,EC,因为四边形ABCD是矩形,所以OA=OC(矩形的对角线互相平分),又因为△BOE≌△DOF,所以OE=OF,所以四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形),因为EF⊥AC,所以四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).20.(1)证明:因为菱形ABCD,所以AB=CD,AB∥CD,又因为BE=AB,所以BE=CD,BE∥CD,所以四边形BECD是平行四边形,所以BD=EC.(2)解:因为平行四边形BECD,所以BD∥CE,所以∠ABO=∠E=50°,又因为菱形ABCD,所以AC⊥BD,即∠AOB=90°,在Rt△AOB中,所以∠BAO=90°-∠ABO=40°,所以∠BAO的大小为40°.21.(1)证明:∵点D,E分别是边BC,AB的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE.(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.22.(1)证明:因为四边形ABCD为矩形,沿MN翻折后,A,C重合,所以AO=CO,AD∥BC,所以∠1=∠2,在△AON和△COM中,所以△AON≌△COM(ASA).(2)解:连接AM,因为四边形ABCD是矩形,AB=6,BC=8,所以∠B=90°,在Rt△ABC中,由勾股定理,得AC===10,由对折知,MN垂直平分AC,所以∠COM=90°,CO=AO=AC=×10=5,CM=AM,设BM=x,则AM=CM=BC-BM=8-x,在Rt△ABM中,由勾股定理,得AM2-BM2=AB2,即(8-x)2-x2=62,解得x=,所以BM=,CM=8-=,在Rt△COM中,由勾股定理,得OM=所以线段OM的长度为.23.(1)证明∵PC平分∠ACB,PD⊥CA,PE⊥CB,∴PD=PE.∴Rt△PCD≌Rt△PCE,∴CD=CE.在△DMC和△EMC中,∴△DCM≌△ECM,∴DM=EM.(2)解:当点M运动到线段CP的中点时,四边形PDME为菱形.理由如下:∵M为PC的中点,PD⊥CA,∴DM=PC,在直角三角形PDC中.∵∠ACB=60°,∴∠PCD=30°,∴PD=PC,∴DM=PD.由(1)得DM=EM,PD=PE,∴PD=PE=EM=DM,∴四边形PDME为菱形.24.(1)证明:因为E,F分别是AD,BD的中点,G,H分别是BC,AC的中点,所以EF∥AB,EF=AB,GH∥AB,GH=AB,所以EF∥GH,EF=GH,所以四边形EFGH是平行四边形.(2)解:当AB=CD时,四边形EFGH是菱形,理由:因为E,F分别是AD,BD的中点,H,G分别是AC,BC的中点,G,F分别是BC,BD的中点,E,H分别是AD,AC的中点,所以EF=AB,HG=AB,FG=CD,EH=CD,又因为AB=CD,所以EF=FG=GH=EH,所以四边形EFGH是菱形.25.(1)证明:因为E是AD的中点,所以AE=ED,因为AF∥BC,所以∠AFE=∠DBE,∠FAE=∠BDE,在△AFE和△DBE中,所以△AFE≌△DBE(AAS),所以AF=BD,因为AD是BC边中线,所以CD=BD,所以AF=CD.(2)解:四边形ADCF的形状是菱形.证明:因为AF=DC,AF∥BC,所以四边形ADCF是平行四边形,因为AB⊥AC,所以∠CAB=90°,因为AD为中线,所以AD=DC=BD=BC,所以平行四边形ADCF是菱形.(3)解:AB=AC.26.解:(1)作图如图(a)所示,因为△ABD和△ACE都是等边三角形,所以AD=AB,AC=AE,∠DAB=∠EAC=60°,因为∠DAC=∠DAB+∠BAC,∠BAE=∠BAC+∠CAE,所以∠DAC=∠BAE.在△DAC和△BAE中,所以△DAC≌△BAE(SAS),所以BE=CD.(2)BE=CD.理由:因为四边形ABFD和ACGE是正方形,所以AD=AB,AC=AE,∠DAB=∠EAC=90°,因为∠DAC=∠DAB+∠BAC,∠BAE=∠BAC+∠CAE,所以∠DAC=∠BAE,在△DAC和△BAE中,所以△DAC≌△BAE(SAS),所以BE=CD.(3)运用(1)(2)解答中所积累的经验和知识,以边AB为直角边向△ABC外作等腰直角三角形ABD,如图(b)所示.则∠BAD=90°,AD=AB,∠ABD=45°.在Rt△ABD中,AD=AB=100米,由勾股定理得,BD==100米.因为∠ABC=45°,所以∠DBC=∠DBA+∠ABC=45°+45°=90°,则△DBC为直角三角形.在Rt△DBC中,BC=100米,由勾股定理得,DC==100米.由(1)可知,BE=DC=100米.所以BE的长为100米.第十九章 一次函数19.1函数与变量例2、答案:(1)和(3)不是函数关系,(2)是函数关系。练习:答案:(1)(2)(4)是,(3)(5)(6)不是。答案:D 练习:C 例4:D; 练习:(1)x取任意实数(2)x取任意实数(3)(4)(5)(6)例7、答案:(1);(2);例8、B练习:1、B 2、A 3、C 4、D例9-练习:1、C 2、A例10、令x=0,则y=1;令y=0,则−2x+1=0,解得:x=.故函数y=−2x+1的图象过点(0,1),(,0).找出点(0,1),(,0),过该两点作直线即可,如图所示。巩固练习一、选择题1-5、CCCBB 6-10、BAAAC 11-12、BD13、(1) 100 (2) 甲 (3) 814、(1) (2)BC边上的高;底边BC的长和△ABC的面积 (3) 36;915、(1) (2)x=-4,y=2;x=-2,y=-2 (3)y=0,x=-3,-1,4;y=4,x=1.5 (4)时,y的值最大为4;时,y的值最小为-2(5)当时,y随x的增大而增大;当或时,y随x的增大而减小.16、17、(1) ,如图 (2)再过2天,即n=6+2=8时,h=12+0.5×8=16(m),再过2天水位高度将达到16米.19.2正比例函数例1.A 练习:1.A 2.C 例2.y=-6x 练习1.-1 2.m=2 3.k=1 4.B 例3. 练习:1. 2.0 3.例4.-3 二、四练习:1. 4 一 三 2.D 3.C 4.k>2 5.C 6.D 7.A例5.B 练习:a ;< 17.二、四;减小. 18.二、四;﹣7;减小. 19.解:设正比例函数的解析式为y=kx(k≠0).∵它图象经过点P(﹣1,2),∴2=﹣k,即k=﹣2.∴正比例函数的解析式为y=﹣2x.又∵它图象经过点Q(﹣m,m+3),∴m+3=2m.∴m=3.20.(1)y=3x﹣5 (2)当y=1时,3x﹣5=1.解得x=221.y与x之间的函数表达式是.把x=2代入得:. 22.(1) (2)a每千瓦时0.5元 b每千瓦时0.9元 23.P1(,4)P2(,-4)19.3一次函数例1.B 练习:1.B 2. 例2.①③④⑤ 练习:1.C 2.B 例3.C 练习:1.≠-2;=1 2.B 例4.四 练习:1.A 2.B 例5.C 练习:1.> 2.一 3.C 4.A 5.A 6.A 7. 8.一 三 四 9. 10.三 例6.D 练习:1.C 2.D 3.B 4.A 例7.D 练习:B 例8.减小 练习:1.> 2. 3. 4.D 5.> 6.A 例9.D 练习:1.D 2.(1)k=9 (2)k=10 (3)k<9 (4)k=4 (5)k>3 例10. 练习:1. 2. 3. 4. 例11-练习:1.(1) (2)2.25 2.9 3.(2,0)(0,-4) 4课后巩固一、填空题1.(3,0)(0,6) 9 2、1 3.(1)4 2 (2)-2 4 (3)-6 -13 4. 2 5. 6. 7. 8.< 9.> > < < < > 10.二 11.(10,0)(0,-5) 12.(1)m<-2 (2)m≠-2 n <4 (3)m≠-2 n =4 二、选择题1-13:D A A B B C DCCBAAB三、解答题1.A在两个函数图像上,B在y=-3x+4图像上(图略)2.y=2x-2 3.3 4.(1) (2) 5.(1)(2)150km 3. 419.4一次函数与一次方程(组)例1、2 练习:1.(2,-1) 2.D 3.(1,0)4.x=1,y=7 ,K=3 5.(-2,0) 6.(1,3)例2.C 练习:1.4 2.x=3 3. 4.C 5.A 例3-练习:1.A 2.D 3.B 4. 5.K<0 例4.A 练习:1.B 2.B 3.k=9,15 例5-练习1.: 2.(1)C(2,2) (2) (3) 19.5一次函数与一次不等式D 练习:1.C 2.B 3.A 4.x>2 例2、C 练习:1.D 2.D 3.x>-1 4.D 5.D 6 .B 例3、3
相关资料
更多