年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023年广东省广州市黄埔区中考一模数学试卷(无答案)

    2023年广东省广州市黄埔区中考一模数学试卷(无答案)第1页
    2023年广东省广州市黄埔区中考一模数学试卷(无答案)第2页
    2023年广东省广州市黄埔区中考一模数学试卷(无答案)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年广东省广州市黄埔区中考一模数学试卷(无答案)

    展开

    这是一份2023年广东省广州市黄埔区中考一模数学试卷(无答案),共6页。试卷主要包含了选择题等内容,欢迎下载使用。
    2023年广东省广州市中考一模 黄埔区 数学试卷一、选择题(本大题共10小题,每小题3分,满分30分)1.实数在数轴上对应点的位置如图所示,则的大小关系为(    ).A B C D.无法确定2.下列图形中,既是轴对称图形又是中心对称图形的是(    ).A B C D32022年国务院政府工作报告中提出,过去一年经济保持恢复发展,国内生产总值达到114万亿元,用科学记数法可以表示为(    ).A    B    C   D4.下列计算正确的是(    ).A  BC        D5.反比例函数图象的每一支上,都随的增大而增大,那么的取值范围是(    ).A B C D6.如图,在中,是斜边上的高,则下列比值中不等于的是(    ).A B C D7.关于的一元二次方程的根的情况,以下说法正确的是(    ).A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根  D.根的情况与的取值有关8.小高有三件运动上衣,分别为蓝色、白色和红色,有两条运动裤,分别是黑色和红色,一天他准备去运动场锻炼,随手拿出一件运动上衣和一条运动裤,则恰好都是红色的概率为(    ).A B C D9.如图,的直径,点为圆上一点,,将劣弧沿弦所在的直线翻折,交于点,则的度数等于(    ).A40° B50° C80° D100°10.如图,在边长为2的正方形中,点从点出发,沿匀速运动到点.若点的中点,则的面积与点运动的路程之间形成的函数关系图象是(    ).ABCD11.因式分解:______         12.二元一次方程组的解为______13.已知圆锥的底面圆半径是3,高为4,则圆锥的侧面积是______14.在甲、乙两位射击运动员的10次考核成绩中,两人的考核成绩的平均数相同,方差分别为,则考核成绩更为稳定的运动员是______(填“甲”、“乙”中的一个).15.如图,等边的面积为,顺次连接各边的中点得,顺次连接各边的中点得,…,如此下去,则的周长为______15       16   16为等腰直角三角形,,动点在边上运动.以为直角顶点,在右侧作等腰直角三角形(如图).中点,三等分点,,连接,则线段的最小值为______174分)解不等式组        18.(4分)如图,菱形中,过点分别作边上的高,求证:      19.(6分)已知1)化简;(2)若点在反比例函数图象上,求的值.         20.(6分)某校九年级体育期末检测自选项目有篮球、跳绳、立定跳远,每个学生任选一项为自选考试项目.1)求学生甲与乙至少有一个人自选篮球的概率;2)除自选项目以外,长跑为必考项目,校内体育活动表现是必查项目,王明与张强的期末体育各项成绩(百分制)的统计图表如图所示:考生自选项目长跑校内体育活动95100951009595 补全条形统计图;②如果期末体育考试按自选项目占50%,长跑占30%,校内体育活动表现占20%计算成绩(百分制),分别计算学生甲与乙的期末体育成绩. 21.(8分)为了减少工人在搬运化工原料受到危害,某物流公司引进机器人,一个机器人比一个工人每小时多搬运420kg,机器人搬运900kg所用的时间与10个工人搬运600kg所用的时间相等.1)求一个机器人与一个工人每小时分别搬运多少化工原料?2)现在需要搬运化工原料3600kg,有3个机器人参与搬运,问至少还需要安排多少个工人才能在2个小时内搬运完?           22.(10分)如图,平面直角坐标系中,的边轴上,反比例函数图象经过点的中点1)求的值和点的坐标;2)若一次函数经过,根据图象回答:当为何值时,?(可直接写出答案).          23.(10分)如图,的直径,点上,1)尺作图:作弦,使得(点不与重合),连接,延长交于点;(保留作图痕迹,不写作法);2)在(1)条件下,求证:,求的长.           24.(12分)如图,的直径,弦于点为劣弧上一动点,的延长线交于点相交于,连接为常数,且).1)求证:2)求的值(用含的式于表示);3)设①求的数量关系;②当,且时,求的值.                          25.(12分)已知抛物线轴交于两点(点在点右侧),且,与轴交于点,过点的直线与抛物线交于另一点,与线段交于点.过点的直线轴正半轴交于点1)求抛物线的解析式;(2)若,求点的坐标;3)设,是否存在实数,使有最小值?如果存在,请求出值;如果不存在,请说明理由.  

    相关试卷

    2023年广东省广州市黄埔区中考一模数学试卷:

    这是一份2023年广东省广州市黄埔区中考一模数学试卷,共5页。

    2023年广东省广州市黄埔区中考数学一模试卷(含解析):

    这是一份2023年广东省广州市黄埔区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年广东省广州市黄埔区数学中考二模 有答案:

    这是一份2022年广东省广州市黄埔区数学中考二模 有答案,共13页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map