


天津市五校2021-2022学年高一下学期期中联考数学试卷(含答案)
展开
这是一份天津市五校2021-2022学年高一下学期期中联考数学试卷(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
天津市五校2021-2022学年高一下学期期中联考数学试卷学校:___________姓名:___________班级:___________考号:___________
一、选择题1、已知a,,i是虚数单位,若,则( )A.0 B.1 C.2 D.-22、北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断,这是一次中国文化与奥林匹克精神的完美结合,现工厂决定从20只相同的“冰墩墩”,15只相同的“雪容融”和15个相同的北京2022年冬奥会会徽中,采用分层随机抽样的方法,抽取一个容量为n的样本进行质量检测,若“冰墩墩”抽取了4只,则n为( )A.3 B.5 C.9 D.103、数据1,2,3,4,5,6,7,8,9的70%分位数为( )A.6 B.7 C.6.5 D.6或74、已知向量,,.若,则( )A.-1 B.0 C.1 D.25、盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的个球颜色相同的概率等于( )A. B. C. D.6、在矩形ABCD中,,.若点M,N分别是CD,BC的中点,则( )A.4 B.3 C.2 D.17、在中,,,若该三角形有两个解,则b边范围是( )A. B. C. D.8、如图,航空测量的飞机航线和山顶在同一铅直平面内,已知飞机飞行的海拔高度为,速度为50.某一时刻飞机看山顶的俯角为15°,经过420s后看山顶的俯角为45°,则山顶的海拔高度大约为(,)( )A. B. C. D. 9、设锐角内角A,B,C的对边分别为a,b,c,已知,,则面积的取值范围为( )A. B. C. D.二、填空题10、已知i是虚数单位,是z的共轭复数,若,则的虚部为_______.11、已知向量,的夹角为,,则_______.12、某同学进行投篮训练,在甲、乙、丙三个不同位置投中的概率分别,,p,该同学站在这三个不同的位置各投篮一次,至少投中一次的概率为,则p的值为________.13、已知在中,内角A,B,C的对边分别为a,b,c,若,,则的周长的最大值为_________.14、如图,在中,,点E在线段AD上移动(不含端点),若,则___________,的最小值为___________.三、解答题15、已知:复数,.(i是虚数单位)(1)若z对应复平面上的点在第三象限,求m的范围;(2)若z是纯虚数,求m的值;(3)若z是实数,求的值.16、已知向量,满足:,,.(1)求与的夹角;(2)若,求实数的值;(3)若向量与所成的夹角为锐角,求实数的取值范围.17、已知a、b、c分别为三个内角A、B、C的对边,.(1)求A;(2)若,的面积为,求b、c.18、新冠肺炎疫情期间,某地为了了解本地居民对当地防疫工作的满意度,从本地居民中随机抽取若干居民进行评分(满分为100分),根据调查数据制成如下频率分布直方图,已知评分在的居民有660人.(1)求频率分布直方图中a的值及所调查的总人数;(2)从频率分布直方图中,估计本次评测分数中位数和平均数(精确到0.1);(3)为了今后更好地完成当地的防疫工作,政府部门又按照分层抽样的方法,从评分在的居民中选出6人进行详细的调查,再从中选取两人进行面对面沟通,求选出的两人恰好都是评分在之间的概率.19、设函数,其中向量,.(1)求的最大值;(2)在中,a,b,c分别是角A,B,C所对的边,已知,,的面积为,求的值.
参考答案1、答案:A解析:因,所以,所以,所以.故选:A2、答案:D解析:抽样比为,所以.故选:D3、答案:B解析:数据共有9个,,所以分位数为第7个数,即7,故选:B4、答案:B解析:因为向量,所以,因为,所以,解得,故选:B5、答案:C解析:记3个红色球分别为a、b、c,记个黄色球分别为A、B,从这5个球中随机抽取2个,所有的基本事件有:ab、ac、aA、bB、、、、、、,共个,其中,事件“所取出的2个球颜色相同”包含的基本事件有:ab、ac,bc,AB,共4个.故所求概率为.故选:C.6、答案:C解析:由题意作出图形,如图所示:由图及题意,可得:,..故选C.7、答案:D解析:因为三角形有两个解,所以,所以,所以.故选:D8、答案:A解析:如图,设飞机的初始位置为点A,经过420s后的位置为点B,山顶为点C,作于点D,则,所以,在中,,由正弦定理得,则,因为,所以,所以山顶的海拔高度大约为.故选:A.9、答案:B解析:因为,所以,因为B为锐角,所以,所以根据正弦定理得,得,所以,因为,所以,所以,所以,所以,所以,所以面积的取值范围为.故选:B10、答案: 解析:由题,因为,所以,所以,故答案为:11、答案:解析:.故答案为:12、答案:解析:该同学在三个不同的位置各投篮一次,至少投中一次的概率为:,解得.故答案为:13、答案:6解析:因为,所以,因为,所以,则,所以的周长为,,,,当,即时, 的周长取得最大值为6,故答案为:6 14、答案:①2 ②解析:因为在中,,所以,即.因为点E在线段AD上移动(不含端点),所以设.所以,对比可得,.代入,得;代入,可得,根据二次函数性质知当时,.故答案为:2;15、答案: (1)(2)(3)0解析:(1)复数的实部为,虚部为,在复平面内所对应的点的坐标为,z对应复平面上的点在第三象限,,解得 (2)z是纯虚数, ,(3)z是实数, ,解得,,则;16、答案:(1)(2)(3) 解析:(1)因为,所以,所以,所以,因为,所以(2)因为,所以,所以,所以,解得.(3)若向量与所成的夹角为锐角,则且与不共线,所以,所以,得,当与共线时,存在,使得,则,因为与不共线,所以,所以且.所以的取值范围为.17、答案:(1)(2)2解析:(1)由正弦定理得:,又,则,则,整理得,又,故,即,,又,故;(2),故,由余弦定理得,即,则,,故18、答案:(1) 1200人(2)中位数为82.9,平均数为80.7(3)解析:(1)由频率分布直方图知即,解得设总共调查了n人,则,解得,即调查的总人数为1200人;(2)因为,所以中位数位于区间,设中位数为x,则,解得:,所以中位数为82.9, 所以估计本次考试成绩的中位数为82.9.由频率分布直方图知各段频率分别为:0.02、0.04、0.14、0.20、0.35、0.25,所以,设平均数为,则.所以所以估计本次考试成绩的平均数为80.7.(3)用分层抽样的方法应该从评分在抽出2人,记编号为1,2,从评分在抽出4人,记编号为3,4,5,6,.则样本空间为,,,,,,,,,,,,,,.用A表示抽出的2人恰好来自于评分在,则.所以选出的两人恰好都是评分在之间的概率为.19、答案: (1) 3(2)2解析:(1)由题设,,所以,当时,的最大值为3.(2)由,得:,则,又,所以,故,则, 由,可得,因为,则在中,由余弦定理得,所以,则.
相关试卷
这是一份天津市四校2021-2022学年高一上学期期末联考数学试卷,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份天津市五区重点校联考2023-2024学年高一上学期期中考试数学试卷(含答案),共12页。试卷主要包含了选择题,填空题,双空题,解答题等内容,欢迎下载使用。
这是一份天津市五区县重点校联考2022-2023学年高一下学期4月期中数学试卷(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
