2023年中考押题预测卷02(苏州卷)-数学(参考答案)
展开2023年中考押题预测卷02【苏州卷】
数学·参考答案
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
B | C | C | C | B | D | B | C |
9.【答案】5
10.【答案】
11.【答案】
12.【答案】或
13.【答案】/52度
14.【答案】26
15.【答案】90
16.【答案】27
17.【答案】
【分析】根据乘方运算,特殊角的三角函数值,二次根式化简,然后进行计算即可.
【详解】解:
··································································2分
·······································································4分
.················································································5分
【点睛】本题考查乘方的运算、特殊角的三角函数值、二次根式的化简,关键是熟练掌握乘方运算法则、二次根式的化简,牢记特殊角的三角函数值;易错点是运算过程中的符号问题.
18.【答案】
【分析】先去分母,把分式方程化为整式方程,再解出整式方程,然后检验,即可求解.
【详解】解:方程两边同乘,得:
,········································································2分
解得:,········································································3分
检验:当时,,···························································4分
∴是原方程的解.·································································5分
【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤,并注意检验是解题的关键.
19.【答案】7
【分析】根据平方差公式、完全平方公式展开,再合并同类项,化简代数式,再将已知变形整体代入即可求解.
【详解】解:∵,
∴,········································································1分
∴
·····························································2分
·······································································4分
.················································································6分
【点睛】本题考查了整式的混合运算,熟练的应用乘法公式是解决问题的关键.
20.【答案】(1)
(2)
【分析】(1)根据概率公式直接求解即可;
(2)设分别表示红、白、蓝、绿四种颜色,根据列表法求概率即可求解.
【详解】(1)解:共有四种颜色的“冰墩墩”,若花花凭购物小票抽奖一次,她抽到的是红色“冰墩墩”的概率为,
故答案为:.······································································2分
(2)解:设分别表示红、白、蓝、绿四种颜色,列表如下
含含花花 | ||||
共有16种等可能结果,其中符合题意的有4种,············································4分
含含和花花抽到相同颜色“冰墩墩”的概率.···········································6分
【点睛】本题考查了概率公式求概率,列表法求概率,熟练掌握求概率的方法是解题的关键.
21.【答案】(1)见解析
(2)4
【分析】(1)由线段的中点得到线段相等的条件,再由平行线的性质得到角相等的条件,即可证得;
(2)由平行线的性质及角平分线定义,导出,得到,据此即可求解.
【详解】(1)证明:∵四边形是平行四边形,
∴,,
∴,,·························································1分
又∵,
∴,
∴;··································································3分
(2)解:∵平分,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴故答案为:4.·······································································6分
【点睛】本题考查平行四边形的性质、全等三角形的性质和判定以及等腰三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.
22.【答案】(1)3;,
(2)100
(3)
【分析】(1)根据图象,数出直线上方的人数即可;由图象可得:20名患者的指标y的取值范围是,名非患者的指标y的取值范围是,位置相对比较集中,因此即可求解.
(2)利用样本估计总体,用乘样本中非患者指标x低于所占百分比即可.
(3)数出指标x低于,且指标y低于的人数,而患者有人,求出患病的概率即可求出答案.
【详解】(1)解:①根据图象可得,指标x大于的有3人,
故答案为:3.·········································································2分
②由图象可得:20名患者的指标y的取值范围是,名非患者的指标y的取值范围是,位置相对比较集中,
∴,,
故答案为:,.····································································4分
(2)解:由图象可得,调查的名非患者中,指标x低于的有4人,
∴来该院就诊的500名非患者中,指标x低于的大约(人),
故答案为:.······································································6分
(3)解:由图象可得,指标x低于,且指标y低于的有人,而患者有人,
则发生漏判的概率是:.························································8分
【点睛】本题考查了平均数、方差的意义,利用样本估计总体,以及概率公式,从图中获取有用信息是解题关键.
23.【答案】(1); ;
(2)存在.点坐标为
【分析】(1)先利用待定系数法求一次函数解析式,再利用一次函数解析式确定M点的坐标,然后利用待定系数法求反比例函数解析式;
(2)先利用两点间的距离公式计算出,,再证明,利用相似比计算出,则,于是可得到点坐标.
【详解】(1)解:∵一次函数的图象经过两点,
∴,
解得,
所以一次函数解析式为;······················································2分
把代入得,
解得,
则点坐标为,
把代入,
得,
所以反比例函数解析式为;·······················································4分
(2)解:存在.5分
∵,
∴, ,
∵,
∴,······································································6分
∵,
∴,
∴,即,··························································7分
∴,
∴,
∴点坐标为.································································8分
【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数的图像与性质、待定系数法求解析式、相似三角形的判定与性质.
24.【答案】(1)等边三角形,见解析
(2)
【分析】(1)如图:连接,先说明是的直径,则,即;根据是的切线可得,即;再根据结合直角三角形的性质和对顶角的性质可得,进而得到即可;
(2)根据直角三角形的性质可得,再根据勾股定理求得,根据是等边三角形和可得,然后解直角三角形可得,最后根据即可解答.
【详解】(1)解:是等边三角形,理由如下:·······································1分
如图:连接,
∵,,是的外接圆,
∴是的直径,
∴,
∴,······························································2分
∵是的切线,
∴,
∴,
∵,,
∴,
∴,
∴,
∴是等边三角形;·······························································4分
(2)解:∵,,,
∴,
∴,····························································5分
∵是等边三角形,,
∴,
∴,······································································6分
∵,,
∴,···········································7分
∴.··················································8分
【点睛】本题主要考查了圆的内接三角形、圆周角定理、切线的性质、等腰三角形的判定、解直角三角形等知识点,灵活运用相关性质、定理是解答本题的关键.
25.【答案】(1)种笔记本每本12元,种笔记本每本15元
(2)20
【分析】(1)设种笔记本每本元,则种笔记本每本元,由题意得,,计算可得的值,进而可得的值;
(2)设第二次购进种笔记本本,则购进种笔记本本,由题意得,,可得,设获得的利润为元,由题意得,,由一次函数的性质可知,当时,的值最大,最大值为,令,求解满足要求的解即可.
【详解】(1)解:设种笔记本每本元,则种笔记本每本元,
由题意得,,···················································2分
解得,,
∴,
∴种笔记本每本12元,种笔记本每本15元;········································4分
(2)解:设第二次购进种笔记本本,则购进种笔记本本,
由题意得,,····················································5分
解得,,
∴,·····································································6分
设获得的利润为元,由题意得,
,··································································7分
,
随的增大而减小,······························································8分
当时,的值最大,最大值为,
由题意得,
解得,,·····································································9分
为正整数,
的最小值为20.·································································10分
【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,一次函数的应用等知识.解题的关键在于根据题意正确的列等式和不等式.
26.【答案】(1),
(2)
(3)
(4)
【分析】(1)把和点代入求出b和c的值,即可得出函数表达式,将其化为顶点式,即可求出点D的坐标;
(2)先求出点C的坐标,再根据两点之间的距离公式,求出,根据勾股定理逆定理,得出,最后根据直角三角形的外心与斜边中点重合,即可求解;
(3)过点P作于点M,作关于x轴的对称线段,
则,点M关于x轴的对称点在,,通过证明,得出,则
当点三点共线时,取最小值,即为的长度,用等面积法求出的长度即可;
(4)连接,先求出点,根据,,可设,,再根据两点之间的距离公式得出,,,,然后根据勾股定理可得:,即可得出n关于m的表达式,将其化为顶点式后可得当时,n随m的增大而减小,当时,n随m的增大而增大,再求出当时,点N经过的路程为,以及当时,点N经过的路程为,即可求解.
【详解】(1)解:把和点代入得:
,解得:,
∴该二次函数的表达式为:,···········································1分
∵,
∴点D的坐标为;······························································2分
(2)解:把代入得,
∴,
∵,,,
∴,
∴,
∴,·····································································3分
∴外接圆半径;·················································4分
(3)解:过点P作于点M,作关于x轴的对称线段,
则,点M关于x轴的对称点在上,,
,
,
,···························································5分
,
当点三点共线且时,取最小值,即为的长度,
,
,即的最小值为.···········································6分
(4)解:连接,
把代入得,
解得:,
∴,
∵,,
∴设,,
∴,,,,··········7分
根据勾股定理可得:,
∴,
整理得:,
∴,····················································8分
∴当时,n随m的增大而减小,当时,n随m的增大而增大,
∵动点M从点C出发,直线b与直线a重合时运动停止,,
∴,
∵当时,,
当时,,
当时,,
∴当时,点N经过的路程为:,
当时,点N经过的路程为:,··········································9分
∴点N经过的总路程为:.··············································10分
【点睛】本题主要考查了二次函数综合,解题的关键是掌握用待定系数法求解函数表达式,直角三角形外接圆圆心为斜边中点,胡不归问题的解决方法,以及勾股定理和二次函数图象上点的坐标特征和勾股定理.
27.【答案】(1)
(2),理由见解析
(3)
(4)
【分析】(1)证明,即可得出结论;
(2)证明,即可得出结论;
(3)过点作于点,先证明,得到,再证明,得到,推出,即可得出结论;
(4)连接交于点,过点作于点,由(3)推出,设,则,求出,根据,得到,进而求出,利用二次函数的性质,求出最值即可得出结果.
【详解】(1)∵四边形是菱形,,
∴,
∴和都是等边三角形,
∴,
∵,
∴,
∴是等边三角形,,
∴,
在和中,
∴,
∴;
故答案为:,································································2分
(2)解:,理由如下:
∵四边形是菱形,,
∴,
∴,
∵,
∴,
∴
∴,
∴
∴;········································································4分
(3)如图3,过点作于点,
∵四边形是菱形,,
∴,
∵,
∴,
∴,
∴,········································································5分
又∵,
∴,
∴,········································································6分
∵,
∴,
∴,
∴··························································7分
(4)如图4,连接交于点,过点作于点,
由(3)可得:, , ,
∴,
∴,
∴,
设,则,
∵四边形是菱形,
∴,
∴
∴,
∵,
∴,,
∴
∴ ·············································8分
∵,
∴,
∴ ,
∴,
即
∵,······································································9分
∴当时, 有最大值:.
故答案为:.··································································10分
【点睛】本题考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,解直角三角形以及利用二次函数的性质求最值.本题的综合性强,难度大,属于中考压轴题.熟练掌握菱形的性质,证明三角形全等和相似,是解题的关键.
2023年中考押题预测卷01(苏州卷)-数学(参考答案): 这是一份2023年中考押题预测卷01(苏州卷)-数学(参考答案),共14页。
2023年中考押题预测卷02(苏州卷)-数学(全解全析): 这是一份2023年中考押题预测卷02(苏州卷)-数学(全解全析),共25页。试卷主要包含了【答案】B,【答案】C,【答案】D,【答案】5,【答案】等内容,欢迎下载使用。
2023年中考押题预测卷02(苏州卷)-数学(考试版)A4: 这是一份2023年中考押题预测卷02(苏州卷)-数学(考试版)A4,共9页。