终身会员
搜索
    上传资料 赚现金
    2023年中考押题预测卷02(苏州卷)-数学(参考答案)
    立即下载
    加入资料篮
    2023年中考押题预测卷02(苏州卷)-数学(参考答案)01
    2023年中考押题预测卷02(苏州卷)-数学(参考答案)02
    2023年中考押题预测卷02(苏州卷)-数学(参考答案)03
    还剩16页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考押题预测卷02(苏州卷)-数学(参考答案)

    展开
    这是一份2023年中考押题预测卷02(苏州卷)-数学(参考答案),共19页。试卷主要包含了【答案】5,【答案】,【答案】或,【答案】/52度,【答案】26,【答案】90,【答案】27等内容,欢迎下载使用。

    2023中考押题预测卷02苏州卷】

    数学·参考答案

    1

    2

    3

    4

    5

    6

    7

    8

    B

    C

    C

    C

    B

    D

    B

    C

    9.【答案】5

    10.【答案】

    11.【答案】

    12.【答案】

    13.【答案】/52

    14.【答案】26

    15.【答案】90

    16.【答案】27

     

    17.【答案】

    【分析】根据乘方运算,特殊角的三角函数值,二次根式化简,然后进行计算即可.

    【详解】解:

    ··································································2

    ·······································································4

    ················································································5

    【点睛】本题考查乘方的运算、特殊角的三角函数值、二次根式的化简,关键是熟练掌握乘方运算法则、二次根式的化简,牢记特殊角的三角函数值;易错点是运算过程中的符号问题.

    18.【答案】

    【分析】先去分母,把分式方程化为整式方程,再解出整式方程,然后检验,即可求解.

    【详解】解:方程两边同乘,得:

    ········································································2

    解得:········································································3

    检验:当时,···························································4

    是原方程的解.·································································5

    【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的基本步骤,并注意检验是解题的关键.

    19.【答案】7

    【分析】根据平方差公式、完全平方公式展开,再合并同类项,化简代数式,再将已知变形整体代入即可求解.

    【详解】解:

    ········································································1

    ·····························································2

    ·······································································4

    ················································································6

    【点睛】本题考查了整式的混合运算,熟练的应用乘法公式是解决问题的关键.

    20.【答案】(1)

    (2)

     

    【分析】(1)根据概率公式直接求解即可;

    2)设分别表示红、白、蓝、绿四种颜色,根据列表法求概率即可求解.

    【详解】(1)解:共有四种颜色的冰墩墩,若花花凭购物小票抽奖一次,她抽到的是红色冰墩墩的概率为

    故答案为:······································································2

    2)解:设分别表示红、白、蓝、绿四种颜色,列表如下

    含含花花

    共有16种等可能结果,其中符合题意的有4种,············································4

    含含和花花抽到相同颜色冰墩墩的概率···········································6

    【点睛】本题考查了概率公式求概率,列表法求概率,熟练掌握求概率的方法是解题的关键.

    21.【答案】(1)见解析

    (2)4

     

    【分析】(1)由线段的中点得到线段相等的条件,再由平行线的性质得到角相等的条件,即可证得

    2)由平行线的性质及角平分线定义,导出,得到,据此即可求解.

    【详解】(1)证明:四边形是平行四边形,

    ·························································1

    ··································································3

    2)解:平分

    故答案为:4·······································································6

    【点睛】本题考查平行四边形的性质、全等三角形的性质和判定以及等腰三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.

    22.【答案】(1)3

    (2)100

    (3)

     

    【分析】(1)根据图象,数出直线上方的人数即可;由图象可得:20名患者的指标y的取值范围是名非患者的指标y的取值范围是,位置相对比较集中,因此即可求解.

    2)利用样本估计总体,用乘样本中非患者指标x低于所占百分比即可.

    3)数出指标x低于,且指标y低于的人数,而患者有人,求出患病的概率即可求出答案.

    【详解】(1)解:根据图象可得,指标x大于的有3人,

    故答案为:3·········································································2

    由图象可得:20名患者的指标y的取值范围是名非患者的指标y的取值范围是,位置相对比较集中,

    故答案为:····································································4

    2)解:由图象可得,调查的名非患者中,指标x低于的有4人,

    来该院就诊的500名非患者中,指标x低于的大约(人),

    故答案为:······································································6

    3)解:由图象可得,指标x低于,且指标y低于的有人,而患者有人,

    则发生漏判的概率是:························································8

    【点睛】本题考查了平均数、方差的意义,利用样本估计总体,以及概率公式,从图中获取有用信息是解题关键.

    23.【答案】(1)

    (2)存在.点坐标为

     

    【分析】(1)先利用待定系数法求一次函数解析式,再利用一次函数解析式确定M点的坐标,然后利用待定系数法求反比例函数解析式;

    2)先利用两点间的距离公式计算出,再证明,利用相似比计算出,则,于是可得到点坐标.

    【详解】(1)解:一次函数的图象经过两点,

    解得

    所以一次函数解析式为······················································2

    代入

    解得

    点坐标为

    代入

    所以反比例函数解析式为·······················································4

    2)解:存在.5

    ······································································6

    ,即··························································7

    点坐标为································································8

    【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数的图像与性质、待定系数法求解析式、相似三角形的判定与性质.

    24.【答案】(1)等边三角形,见解析

    (2)

     

    【分析】(1)如图:连接,先说明的直径,则,即;根据的切线可得,即;再根据结合直角三角形的性质和对顶角的性质可得,进而得到即可;

    2)根据直角三角形的性质可得,再根据勾股定理求得,根据是等边三角形和可得,然后解直角三角形可得,最后根据即可解答.

    【详解】(1)解:是等边三角形,理由如下:·······································1

    如图:连接

    的外接圆,

    的直径,

    ,

    ······························································2

    的切线,

    是等边三角形;·······························································4

    2)解:

    ····························································5

    是等边三角形,

    ······································································6

    ···········································7

    ··················································8

    【点睛】本题主要考查了圆的内接三角形、圆周角定理、切线的性质、等腰三角形的判定、解直角三角形等知识点,灵活运用相关性质、定理是解答本题的关键.

    25.【答案】(1)种笔记本每本12元,种笔记本每本15

    (2)20

     

    【分析】(1)设种笔记本每本元,则种笔记本每本元,由题意得,,计算可得的值,进而可得的值;

    2)设第二次购进种笔记本本,则购进种笔记本本,由题意得,,可得,设获得的利润为元,由题意得,,由一次函数的性质可知,当时,的值最大,最大值为,令,求解满足要求的解即可.

    【详解】(1)解:设种笔记本每本元,则种笔记本每本元,

    由题意得,···················································2

    解得,

    种笔记本每本12元,种笔记本每本15元;········································4

    2)解:设第二次购进种笔记本本,则购进种笔记本本,

    由题意得,····················································5

    解得,

    ·····································································6

    设获得的利润为元,由题意得,

    ··································································7

    的增大而减小,······························································8

    时,的值最大,最大值为

    由题意得

    解得,·····································································9

    为正整数,

    的最小值为20·································································10

    【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,一次函数的应用等知识.解题的关键在于根据题意正确的列等式和不等式.

    26.【答案】(1)

    (2)

    (3)

    (4)

     

    【分析】(1)把和点代入求出bc的值,即可得出函数表达式,将其化为顶点式,即可求出点D的坐标;

    2)先求出点C的坐标,再根据两点之间的距离公式,求出,根据勾股定理逆定理,得出,最后根据直角三角形的外心与斜边中点重合,即可求解;

    3)过点P于点M,作关于x轴的对称线段

    ,点M关于x轴的对称点,通过证明,得出,则

    当点三点共线时,取最小值,即为的长度,用等面积法求出的长度即可;

    4)连接,先求出点,根据,可设,再根据两点之间的距离公式得出,然后根据勾股定理可得:,即可得出n关于m的表达式,将其化为顶点式后可得当时,nm的增大而减小,当时,nm的增大而增大,再求出当时,点N经过的路程为,以及当时,点N经过的路程为,即可求解.

    【详解】(1)解:把和点代入得:

    ,解得:

    该二次函数的表达式为:···········································1

    D的坐标为······························································2

    2)解:把代入

    ·····································································3

    外接圆半径·················································4

    3)解:过点P于点M,作关于x轴的对称线段

    ,点M关于x轴的对称点上,

      

    ···························································5

    当点三点共线且时,取最小值,即为的长度,

    ,即的最小值为···········································6

    4)解:连接

    代入

    解得:  

     ··········7

    根据勾股定理可得:

    整理得:

    ····················································8

    时,nm的增大而减小,当时,nm的增大而增大,

    动点M从点C出发,直线b与直线a重合时运动停止,

    时,

    时,

    时,

    时,点N经过的路程为:

    时,点N经过的路程为:··········································9

    N经过的总路程为:··············································10

    【点睛】本题主要考查了二次函数综合,解题的关键是掌握用待定系数法求解函数表达式,直角三角形外接圆圆心为斜边中点,胡不归问题的解决方法,以及勾股定理和二次函数图象上点的坐标特征和勾股定理.

    27.【答案】(1)

    (2),理由见解析

    (3)

    (4)

     

    【分析】(1)证明,即可得出结论;

    2)证明,即可得出结论;

    3)过点于点,先证明,得到,再证明,得到,推出,即可得出结论;

    4)连接于点,过点于点,由(3)推出,设,则,求出,根据,得到,进而求出,利用二次函数的性质,求出最值即可得出结果.

    【详解】(1四边形是菱形,

    都是等边三角形,

    是等边三角形,

    中,

     

    故答案为:································································2

    2)解:,理由如下:

    四边形是菱形,

    ········································································4

    3)如图3,过点于点

    四边形是菱形,

    ········································································5

    ········································································6

    ··························································7

    4)如图4,连接于点,过点于点

    由(3)可得:

    ,则

    四边形是菱形,

    ·············································8

    ······································································9

    时, 有最大值:

    故答案为:··································································10

    【点睛】本题考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,解直角三角形以及利用二次函数的性质求最值.本题的综合性强,难度大,属于中考压轴题.熟练掌握菱形的性质,证明三角形全等和相似,是解题的关键.

     


     

    相关试卷

    2023年中考押题预测卷01(苏州卷)-数学(参考答案): 这是一份2023年中考押题预测卷01(苏州卷)-数学(参考答案),共14页。

    2023年中考押题预测卷02(苏州卷)-数学(全解全析): 这是一份2023年中考押题预测卷02(苏州卷)-数学(全解全析),共25页。试卷主要包含了【答案】B,【答案】C,【答案】D,【答案】5,【答案】等内容,欢迎下载使用。

    2023年中考押题预测卷02(苏州卷)-数学(考试版)A4: 这是一份2023年中考押题预测卷02(苏州卷)-数学(考试版)A4,共9页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年中考押题预测卷02(苏州卷)-数学(参考答案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map