小升初真题汇编填空题(三)-2023年六年级下册数学高频考点苏教版(江苏南通)
展开小升初真题汇编填空题(三)
2023年六年级下册数学高频考点苏教版(江苏南通)
1.(2021•南通)a=b+1(a、b都是不为0的自然数),a和b的最大公因数是 ,a和b的最小公倍数是 。
2.(2021•如东县)如图长方形长3分米,宽2分米。以宽边的中点连线(如图)为轴旋转一周所形成的立体图形的表面积是 平方分米,以宽边为轴旋转一周所形成的立体图形的体积是 立方分米(计算结果保留π)。
3.(2021•如东县)已知☆+△=30,☆+☆+☆+△=40,那么☆= ,△= 。
4.(2021•如东县)“142857”是个很神奇的数,有人将它有顺序地排列成:142857142857142857……从左往右数,第40个数字是 ,前40个数字的和是 。
5.(2020•海安市)甲、乙两地相距2千米,在一幅地图上量得甲、乙两地的距离是4厘米,这幅图的比例尺是 .在这幅图上量得乙、丙两地的距离是5厘米,则乙、丙两地间的实际距离是 千米.
6.(2021•婺城区)
4.5米= 厘米
3时45分= 时
250公顷= 平方千米
0.18 =180
7.(2021•南通)一个底面半径是2分米的圆柱,把它沿直径切分成若干等份,再拼成一个与它等底等高的近似的长方体.如果它的表面积比圆柱的表面积增加了24平方分米,那么这个圆柱的表面积是 平方分米.体积是 立方分米.
8.(2021•南通)我们所穿鞋的尺码通常是用“码”或“厘米”作单位,它们之间的换算关系是:b=2a﹣10(b表示码数,a表示厘米数)。那么24厘米的鞋子用“码”作单位就是 码。
9.(2020•海安市)157的分数单位是 ,有 个这样的分数单位,再添上 个这样的分数单位就是最小的质数.
10.(2021•南通)请仔细观察图中正方形的个数与直角三角形的个数有什么关系,并把下表填写完整。
正方形个数
2
3
4
…
…
n
直角三角形个数
4
8
…
100
…
11.(2020•海安市)根据如图可知,小明家在学校的 偏 °方向 千米处.
12.(2021•如皋市)质检员对果品店新进的一批水果进行质量检验并做记录(如表),规定每箱标准质量不低于25千克为合格,将超出部分用正数表示,反之用负数或0表示。
①号
②号
③号
④号
⑤号
⑥号
+0.1
+0.5
0
﹣0.5
﹣0.1
+0.2
(1)上面6箱水果,符合标准的有 箱。
(2)最少的一箱实际质量是 千克。
13.(2020•海安市)现有若干个圆环,它们的外直径都是5厘米,环宽5毫米,将它们扣在一起(如图所示)拉紧后测量总长度.
圆环个数
1
2
3
4
…
总长度(cm)
5
9
13
17
…
像这样,10个圆环拉紧后的长度是 厘米.如果圆环的个数为n,拉紧后总长度是 厘米.
14.(2020•海安市)毕业联欢会上,文艺委员把38块糖和28个果冻分别平均分给一个组的同学,结果糖剩2块,果冻剩4个,这个组最多有 名同学.
15.(2020•海安市)如图是“618购物节”期间,某商场冰箱线上销售情况.其中A品牌销售386台,那么销售量最大的C品牌销售了 台.
16.(2020•海安市)正方形网格中,小方格的顶点叫做格点.如图,每个小方格都是边长为1的正方形,A、B两点在正方形网格的格点上,点C也在格点上,且△ABC为等腰三角形,则符合条件的格点C共有 个.
17.(2021•如皋市)张阿姨买了3000元的国家建设债券,定期3年,年利率为5%。到期后,她一共可以取回 元。
18.(2020•海安市)有资料表明,某地区高度每增加100米,气温下降0.8℃.数学兴趣小组的同学由此想出了测量山峰高度的办法:一名同学在山脚,一名同学在山顶,他们在某天上午9时整测得山脚和山顶的气温分别为18℃和15.6℃.由此可推算出该山峰高 米.
19.(2020•海安市)如图,有A、B两个底面积相等的容器,A容器盛满水,如果将水全部倒入B容器,水面距离B容器口 厘米.
20.(2020•海安市)如图,大正方形被分成了4个相同的三角形和一个小正方形.大正方形的周长为24厘米,已知a:b=2:1,则小正方形的面积是 平方厘米.
21.(2020•海安市)买2千克荔枝和3千克桂圆,共付80元,已知2千克荔枝的价钱等于1千克桂圆的价钱,则荔枝每千克 元,桂圆每千克 元.
22.(2021•南通)0.07公顷= 平方米 18分= 时
23.(2021•如东县)如图是小丽步行情况统计图。小丽前3分钟一共行走了 米,她这3分钟的平均速度是 米/分。
24.(2021•如东县)“算24”是一种益智游戏。要求用所给的四个数算出24,每个数只能用一次。请根据给定的四个数,分别写出一道计算24的综合算式。
(1)3,6,2,9, ;
(2)4,10,4,8, 。
25.(2021•如东县)用长8厘米,宽6厘米的白纸,剪出一个最大的半圆,这个半圆的周长是 厘米(结果保留π),这张白纸的利用率大约是 %(π取3.14)。
26.(2021•南通)据统计,截止2015年年底,中国网民规模达六亿八千八百零四万五千人,横线上的数写作 人,改写成以“万”作单位的数是 万人,省略“亿”后面的尾数约是 亿人。
27.(2021•如东县)根据给出条件,只列式不计算。
有两种花,红花30朵,______。黄花有多少朵?(如果列方程,设黄花有x朵)
(1)黄花与红花朵数的比是3:5。 ;
(2)比黄花的3倍多6朵。 ;
(3)红花比黄花朵数多12。 ;
(4)黄花比红花的23多3朵。 。
28.(2021•南通)2018年俄罗斯世界杯足球赛开幕战中,俄罗斯队和沙特队之间进行了一场90分钟的比赛。右图中用涂色的扇形表示已经进行的时间,空白部分表示比赛剩余的时间。图中可以知道已经比赛时间和剩余时间的比大约是 ,这场比赛还剩 分钟。
29.(2020•海安市)地球上海洋总面积是三亿六千二百万平方千米,横线上的数写作 平方千米,改写成用“万”作单位的数是 万平方千米.省略“亿”后面的尾数约是 亿平方千米.
30.(2021•南通)某一时刻,数学课外兴趣小组的同学测得直立在地面的竹竿及其影长,如下表。
竹竿长/厘米
108
78
54
18
影长/厘米
90
65
45
15
(1)根据表中数据判断,物体的长度与它的影子长度成 比例。
(2)在这一时刻,测得一棵大树的影子长为5.5米,则这棵大树的高度为 米。
小升初真题汇编填空题(三)
2023年六年级下册数学高频考点苏教版(江苏南通)
参考答案与试题解析
1.【答案】1,ab。
【分析】求两数的最大公因数和最小公倍数,就看两个数之间的关系,两个数互质,则最大公因数是1,最小公倍数就是这两个数的乘积。
【解答】解:a=b+1(a、b都是不为0的自然数),说明a和b是相邻的非0自然数,相邻的非零自然数是互质数,所以a和b的最大公因数是1,最小公倍数是ab。
故答案为:1,ab。
【点评】熟练掌握互为质数的两个数的最大公因数是1,最小公倍数就是这两个数的乘积是解题的关键。
2.【答案】8π;18π。
【分析】根据圆柱的定义:一个长方形长3分米,宽2分米,以宽边的中点连线为轴旋转一周,会得到一个圆柱形,这个圆柱的底面半径是(2÷2)分米,高是3分米,根据圆柱的表面积=侧面积+底面积×2,求出表面积;以宽为轴旋转一周,形成的圆柱的底面半径是3分米,高是2分米,由此根据圆柱的体积=底面积×高,把数据代入公式解答即可。
【解答】解:表面积:2×π×3+π×(2÷2)2×2
=6π+2π
=8π(平方分米)
体积:π×32×2
=π×9×2
=18π(立方分米);
答:以宽边的中点连线为轴旋转一周,形成的图形的表面积是8π平方分米,以宽为轴旋转一周,形成的图形的体积是18π立方分米。
故答案为:8π;18π。
【点评】此题主要考查圆柱的表面积公式、体积公式的灵活运用。
3.【答案】5,25。
【分析】根据已知条件“☆+△=30”可知△=30﹣☆,把“△=30﹣☆”代入“☆+☆+☆+△=40”可先求出☆的值,再把☆的值代入“△=30﹣☆”,即可求出△的值,据此解答。
【解答】解:由“☆+△=30”可知△=30﹣☆,
把“△=30﹣☆”代入“☆+☆+☆+△=40”可得出:☆+☆+☆+30﹣☆=40,解得:☆=5,
把“☆=5”代入“△=30﹣☆”中得:△=30﹣5=25。
即:☆=5,△=25。
故答案为:5,25。
【点评】本题有两个未知量,解答时要注意观察已知条件,然后把一个未知量用另一个未知量代替,这样比较容易理解。
4.【答案】8,177。
【分析】根据题意可知,每6个数字一循环,计算第40位数字是第几组循环零几个数字,即可判断是多少;然后根据组数和每组数的和计算前40位数字的和。
【解答】解:40÷6=6(组)……4(个)
(1+4+2+8+5+7)×6+1+4+2+8
=27×6+15
=162+15
=177
答:从左往右数,第40个数字是8,前40个数字的和是177。
故答案为:8,177。
【点评】先找到规律,再根据规律求解。
5.【答案】见试题解答内容
【分析】根据比例尺的意义,图上距离:实际距离=比例尺,已知甲、乙两地的图上距离和实际距离,据此可求出这幅地图的比例尺;根据前面所求出的比例尺和乙丙两地的图上距离,即可求出乙丙两地的实际距离.
【解答】解:2千米=200000厘米
4:200000=1:50000
5÷150000=250000(厘米)
250000厘米=2.5千米
答:这幅图的比例尺是1:50000,乙、丙两地间的实际距离是2.5千米.
故答案为:1:50000,2.5.
【点评】本题是考查比例尺的意义、根据比例尺和图上距离求实际距离.
6.【答案】见试题解答内容
【分析】根据1米=100厘米,可知4米=400厘米,0.5米=50厘米,故4.5米=450厘米;
根据1时=60分,可知45分=0.75时,则3时45分=3.75时;
根据1公顷=10000平方米,可知250公顷=2500000平方米,又因为1平方千米=1000000平方米,故2500000平方米=2.5平方千米;
根据1千米=1000米,可知0.18千米=180米.
【解答】解:
4.5米=450厘米
3时45分=3.75时
250公顷=2.5平方千米
0.18千米=180米
故答案为:450,3.75,2.5,千米,米(答案不唯一).
【点评】本题考查长度、时间、面积单位之间的换算,解决本题的关键是能够正确的进行各单位之间的换算.
7.【答案】见试题解答内容
【分析】把一个圆柱切开后拼成一个和它等底等高的近似长方体,拼成的长方体表面积就比圆柱多了两个长方形的面积,这两个长方形的长和圆柱的底面半径相等,都是2分米,宽和圆柱的高相等;已知表面积增加了24平方分米,就可求出高是多少分米,进而再求出圆柱的表面积和体积.
【解答】解:24÷2÷2=6(分米)
3.14×22×2+3.14×2×2×6
=3.14×8+3.14×24
=3.14×32
=100.48(平方分米)
3.14×22×6
=3.14×4×6
=3.14×24
=75.36(立方分米)
答:这个圆柱体的表面积是100.48平方分米,体积是75.36立方分米.
故答案为:100.48;75.36.
【点评】此题是求圆柱的表面积和体积,求体积必须先知道底面半径和高,才可利用“V=Sh”来解答.
8.【答案】38。
【分析】据“码”和“厘米”之间的关系,用b=2a﹣10(b表示码数,a表示厘米数)来表示,所以只要把一个量代入就可以求另外一个量。
【解答】解:已知鞋子24厘米,代入公式可得:
b=2a﹣10=2×24﹣10=38(码)
故答案为:38。
【点评】此题考查了日常生活中鞋底“码”和“厘米”关系的转换,只需代入公式计算就可以了。
9.【答案】见试题解答内容
【分析】157化成假分数127,把单位“1”平均分成7份,每份是17,根据分数单位的意义,17是分母为7的分数的分数单位,127有12个这样的分数单位,最小的质数是2,也就是 147,因此,它再添上14﹣12=2个这样的分数单位就是最小的质数.
【解答】解:157=127
127的分数单位是17,127有12个这样的分数单位;
最小的质数是2,也就是147,它再添上14﹣12=2个这样的分数单位就是最小的质数;
故答案为:17,12,2.
【点评】此题考查的知识点有分数的意义、分数单位的意义,质数的意义等.
10.【答案】12;26;4(n﹣1)。
【分析】此题通过观察与分析即可得出,每增加一个正方形就会增加4个直角三角形,于是得出与4有关的公式:n个正方形的三角形个数=4×(n﹣1)。
【解答】解:由n个正方形的三角形个数=4×(n﹣1)得:
当n=4时,三角形个数=4×(4﹣1)=12(个);
当4×(n﹣1)=100时,n=100÷4+1=26;
正方形个数
2
3
4
…
26
…
n
直角三角形个数
4
8
12
…
100
…
4(n﹣1)
故答案为:12;26;4(n﹣1)。
【点评】根据题干中已知的图形排列特点及数量关系,推理得出一般的规律是解决此类问题的关键。
11.【答案】见试题解答内容
【分析】根据地图上的方向,上北下南,左西右东,以学校的位置为观察点,即可确定小明家位置的方向和距离,据此解答.
【解答】解:由图可知,小明家在学校的北偏东60°方向6千米处.
故答案为:北,东,60,6.
【点评】此题考查了利用方向与距离在平面图中确定物体位置的方法的灵活应用.
12.【答案】4,24.5。
【分析】每箱标准质量不低于25千克为合格,将超出部分用正数表示,反之用负数或0表示,只要是大于或等于0的就是合格的箱数;求最少的一箱实际质量是多少千克,用“25﹣0.5”计算即可。
【解答】解:(1)因为在+0.1、+0.5、0、﹣0.5、﹣0.1、+0.2中,大于或等于0的有4个,所以符合标准的有4箱;
(2)25﹣0.5=24.5(千克)
答:最少的一箱实际质量是24.5千克。
故答案为:4,24.5。
【点评】抓住本题“每箱标准质量不低于25千克为合格”这是一个关键条件。
13.【答案】41;(4n+1).
【分析】根据图示可知:1个圆环的长度是5厘米;2个圆环的总长度是:5+4=9(厘米);3个圆环的总长度是:5+4+4=13(厘米);……n个圆环的总长度是:5+4(n﹣1)=(4n+1)厘米.据此解答即可.
【解答】解:1个圆环的长度是5厘米
2个圆环的总长度是5+4=9(厘米)
3个圆环的总长度是:5+4+4=13(厘米)
……
10个圆环的总长度是:
4×10+1
=40+1
=41(厘米)
……
n个圆环的总长度是:5+4(n﹣1)=(4n+1)厘米
答:10个圆环拉紧后的长度是41厘米.如果圆环的个数为n,拉紧后总长度是(4n+1)厘米.
故答案为:41;(4n+1).
【点评】此题关键是从简单情形入手,找出图形之间的联系,数字之间的运算规律,利用规律解决问题.
14.【答案】见试题解答内容
【分析】根据题意可知:如果糖有38﹣2=36块,果冻有28﹣4=24个,正好够分,求这个组最多有几名同学,即求36和24的最大公因数,把36和24进行分解质因数,这两个数的公有质因数的连乘积是这两个数的最大公因数;由此解答即可.
【解答】解:38﹣2=36(块)
28﹣4=24(个)
36=2×2×3×3
24=2×2×2×3
所以36和24的最大公因数是:2×2×3=12,即最多有12名同学;
答:这个组最多有12名同学.
故答案为:12.
【点评】求最大公因数也就是这几个数的公有质因数的连乘积,对于两个数来说:两个数的公有质因数的连乘积是这两个数的最大公因数.
15.【答案】见试题解答内容
【分析】把三个品牌冰箱的销售量看作单位“1”,A品牌销售的台数占总销售量的百分数=1﹣50%﹣30%,则总销售的台数=A品牌销售的台数÷该品牌销售的台数占总销售量的百分数,C品牌销售的台数=C品牌销售台数占总销售台数的百分数×总销售的台数,正确计算即可.
【解答】解:1﹣50%﹣30%=20%
386÷20%=1930(台)
50%×1930=965(台)
答:销售量最大的C品牌销售了965台.
故答案为:965.
【点评】本题考查扇形统计图,解决本题的关键是明确数量关系,并能正确计算.
16.【答案】见试题解答内容
【分析】(1)如果AB作底的话,符合条件的格点C共有5个.
(2)如果AB作一个腰的话,符合条件的格点C共有4个.
【解答】解:根据分析,
(1)如果AB作底的话,符合条件的格点C共有5个.
(2)如果AB作腰的话,符合条件的格点C共有4个.
5+4=9(个)
故答案为:9.
【点评】解答此题的关键是分两种情况解答:AB作底和AB作腰.
17.【答案】3450。
【分析】根据本息和=本金+本金×利率×存期,代入数据解答即可。
【解答】解:3000+3000×3×5%
=3000+450
=3450(元)
答:到期后,她一共可以取回3450元。
故答案为:3450。
【点评】本题考查了存款利息相关问题,公式:本息和=本金+本金×利率×存期。
18.【答案】见试题解答内容
【分析】该山峰的高度=(山脚的温度﹣山顶的温度)÷0.8×100,正确计算即可.
【解答】解:(18﹣15.6)÷0.8×100
=2.4÷0.8×100
=3×100
=300(米)
答:该山峰高300米.
故答案为:300.
【点评】本题是整数、小数复合应用题,解决本题的关键是明确数量关系,并能正确计算.
19.【答案】见试题解答内容
【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以当圆锥和圆柱的底面积相等,体积相等时,圆柱的高是圆锥高的13,由此可以求出B容器下面圆锥容器盛满水倒入等底的圆柱容器中水面高,也就是把A容器盛满水倒入B容器水面距离B容器口的距离.据此解答.
【解答】解:24×13=8(厘米)
答:水面距离B容器口8厘米.
故答案为:8.
【点评】此题考查的目的是理解掌握等底等高的圆柱和圆锥体积之间关系的灵活运用.
20.【答案】见试题解答内容
【分析】根据图示,利用正方形周长公式:正方形的周长=边长×4,求正方形的边长:24÷4=6(厘米),然后根据a与b的比求出a和b的值,最后利用正方形面积公式:正方形的面积=边长×边长,和三角形面积公式:三角形的面积=底×高÷2,用大正方形的面积减去4个小三角形的面积,就是小正方形的面积.
【解答】解:24÷4=6(厘米)
6÷(2+1)×1
=6÷3×1
=2(厘米)
2×2=4(厘米)
6×6﹣4×2÷2×4
=36﹣16
=20(平方厘米)
答:小正方形的面积是20平方厘米.
故答案为:20.
【点评】本题主要考查组合图形的面积,关键是利用正方形和三角形的面积公式计算.
21.【答案】见试题解答内容
【分析】已知2千克荔枝的价钱等于1千克桂圆的价钱,买2千克荔枝和3千克桂圆就相当于买4千克的桂圆,花了80元,用除法就可以求出1千克桂圆的价格,进而可求荔枝的价格.
【解答】解:2千克荔枝=1千克桂圆
2千克荔枝+3千克桂圆=4千克桂圆
80÷4=20(元)
20÷2=10(元)
答:荔枝每千克10元,桂圆每千克20元.
故答案为:10,20.
【点评】本题的关键是通过其中一个算式变化成用一个未知的量来代替另一个未知的量,再把它等量代换到已知的另一个算式中,就可解决问题.
22.【答案】700,0.3。
【分析】高级单位公顷化低级单位平方米乘进率10000;
低级单位分化高级单位时除以进率60。
【解答】解:0.07公顷=700平方米
18分=0.3时
故答案为:700,0.3。
【点评】本题是考查面积的单位换算、时间的单位换算。单位换算首先要弄清是由高级单位化低级单位还是由低级单位化高级单位,其次记住单位间的进率。
23.【答案】150,50。
【分析】通过观察折线统计图可知,小丽前3分钟一共行走了150米,再根据速度=路程÷时间,求出她这3分钟的平均速度是多少米/分。据此解答。
【解答】解:150÷3=50(米/分)
答:小丽前2分钟一共行走了150米,她这3分钟的平均速度是50米/分。
故答案为:150,50。
【点评】此题考查的目的是理解掌握折线统计图的特点及作用,并且能够根据统计图提供的信息,利用路程、速度、时间三者之间的关系,解决有关的实际问题。
24.【答案】(1)(9﹣3﹣2)×6=24;(2)4×(10﹣8+4)=24。(答案不唯一)
【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题。
【解答】解:答案不唯一:
(1)(9﹣3﹣2)×6=24;
(2)4×(10﹣8+4)=24。
故答案为:(9﹣3﹣2)×6=24;4×(10﹣8+4)=24。
【点评】此题考查对运算符号的熟练运用,有一定的技巧性,关键是掌握整数的四则混合运算。
25.【答案】4π+8,52.3。
【分析】根据题意可知,在这张长方形纸上剪一个最大的半圆,这个半圆的直径等于长方形的长,根据半圆的周长公式:C=πd÷2+d,把数据代入公式求出这个半圆的周长,根据半圆的面积公式:S=πr2÷2,长方形的面积公式:S=ab,分别求出半圆的面积、长方形的面积,然后根据求一个数是另一个数的百分之几,用除法解答。
【解答】解:π×8÷2+8
=8π÷2+8
=4π+8(厘米)
3.14×(8÷2)2÷2÷(8×6)
=3.14×16÷2÷48
=25.12÷48
≈0.523
=52.3%
答:这个半圆的周长是(4π+8)厘米,这张白纸的利用率大约是52.3%。
故答案为:4π+8,52.3。
【点评】此题考查的目的是理解半圆的周长、半圆面积的意义、掌握半圆的周长公式、面积公式、长方形的面积公式及应用,百分数的意义及应用。
26.【答案】688045000,68804.5,7。
【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;
改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;
省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字。
【解答】解:六亿八千八百零四万五千写作:688045000;
688045000=68804.5万;
688045000≈7亿。
故答案为:688045000,68804.5,7。
【点评】本题主要考查整数的写法、改写和求近似数,写数时要注意零的写法,改写和求近似数时要注意带计数单位。
27.【答案】(1)30÷5×3;
(2)(30﹣6)÷3;
(3)30÷(1+12);
(4)30×23+3。
【分析】(1)把红花朵数平均分成5份,先用除法求出1份的朵数,黄花朵数相当于这样的3份,再用乘法即可求了黄花的朵数。
(2)红花的朵数减6朵,正好是黄花朵数的3倍,用红花朵数减6朵的差除以3,就是黄花的朵数。
(3)把黄花的朵数看作单位“1”,则红花的朵数相当于黄花的(1+12),根据分数除法的意义,用红花的朵数除以(1+12),就是黄花的朵数。
(4)把红花的朵数看作单位“1”,根据分数乘法的意义,用红花的朵数乘23,再加3朵,就是黄花的朵数、
【解答】解:(1)30÷5×3
=6×3
=18(朵)
答:黄花有18朵。
(2)(30﹣6)÷3
=24÷3
=8(朵)
答:黄花有8朵。
(3)30÷(1+12)
=30÷32
=20(朵)
答:黄花有20朵。
(4)30×23+3
=20+3
=23(朵)
答:黄花有23朵。
故答案为:30÷5×3;(30﹣6)÷3;30÷(1+12);30×23+3。
【点评】此题主要考查了比的应用;分数乘、除法的应用。
28.【答案】2:1,30。
【分析】把这场比赛的时间(90分钟)看作单位“1”,通过观察扇形统计图可知,已经比赛的时间大约占这场比赛时间的23,剩余的时间占这场比赛时间的13,根据比的意义,求出已经比赛时间和剩余时间的比,求根据求一个数的几分之几是多少,用乘法求出这场比赛剩余的时间。
【解答】解:23:13=2:1
90×13=30(分钟)
答:已经比赛时间和剩余时间的比是2:1,这场比赛还剩30分钟。
故答案为:2:1,30。
【点评】此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题。
29.【答案】见试题解答内容
【分析】亿位上的数字是3,千万位上的数字是6,百万位上的数字是2,这个数是362000000,改写成用“万”作单位的数,即小数点向左移动4位,省略“亿”后面的尾数看千万位,用四舍五入法解答即可.
【解答】解:地球上海洋总面积是三亿六千二百万平方千米,横线上的数写作362000000平方千米,改写成用“万”作单位的数是36200万平方千米.省略“亿”后面的尾数约是4亿平方千米.
故答案为:362000000,36200,4.
【点评】本题考查整数的写法和改写、近似数,解决本题的关键是能够正确写出数,并能正确的改写数.
30.【答案】6.6米。
【分析】(1)根据统计表计算竹竿长和影长的比,18:15=65,54:45=65,75:56=65,竹竿长和影长的比值相等,竹竿长和影长成正比例关系;据此判断即可。
(2)物体的长度与它的影子长度成正比例,比值是65,所以树高:树影长=65,可得树高=树影长×65。
【解答】解:(1)18:15=65,54:45=65,75:56=65,
竹竿长和影长的比值相等,竹竿长和影长成正比例关系;
所以,物体的长度与它的影子长度成正比例;
(2)5.5×65=6.6(米)
答:这棵大树的高度为6.6米。
【点评】根据两个量比值相等,找出题中的数量成正比例关系,根据成正比例的两个量比值相等解决问题。
声明:试题解析著作权属所有,未经书面同意,不得复制发布日期:2023/5/9 14:07:48;用户:鲁梓阳;邮箱:hfnxxx58@qq.com;学号:47467571
小升初真题汇编填空题(一)-2023年六年级下册数学高频考点苏教版(江苏南通): 这是一份小升初真题汇编填空题(一)-2023年六年级下册数学高频考点苏教版(江苏南通),共18页。试卷主要包含了海安历史悠久,是江海文化的源头,剪一些图形装扮教室等内容,欢迎下载使用。
小升初真题汇编填空题(五)-2023年六年级下册数学高频考点苏教版(江苏南通): 这是一份小升初真题汇编填空题(五)-2023年六年级下册数学高频考点苏教版(江苏南通),共16页。试卷主要包含了用“十字形”分割正方形,把一个长方形按照1等内容,欢迎下载使用。
小升初真题汇编填空题(四)-2023年六年级下册数学高频考点苏教版(江苏南通): 这是一份小升初真题汇编填空题(四)-2023年六年级下册数学高频考点苏教版(江苏南通),共17页。试卷主要包含了一幅地图的比例尺为1, 等内容,欢迎下载使用。