初中数学人教版八年级下册19.2.2 一次函数课后测评
展开第十九章 一次函数周周测5
一 选择题
1.下列关系中的两个量成正比例的是( )
A.从甲地到乙地,所用的时间和速度; B.正方形的面积与边长
C.买同样的作业本所要的钱数和作业本的数量; D.人的体重与身高
2.下面哪个点不在函数y=﹣2x+3的图象上( )
A.(﹣5,13) B.(0.5,2) C.(3,0) D.(1,1)
3.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是( )
A. B. C. D.
4.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x-4)-2b>0解集为( )
A.x>﹣2 B.x<﹣2 C.x>2 D.x<3
5.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的( )
6.正比例函数y=3x的大致图像是( )
7.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是( )
A.1 B.2 C.3 D.4
8.已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
A.4 B.5 C.6 D.7
9.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是( )
10.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为 A(1,1),B(3,1),C(2,2)当直线y=0.5x+b与△ABC有交点时,b的取值范围是( )
A.-1≤b≤1 B.-1≤b≤0.5 C.-0.5≤b≤0.5 D.-0.5≤b≤1
11.已知点P(m,n)是一次函数y=x﹣1的图象位于第一象限部分上的点,其中实数m、n满足(m+2)2﹣4m+n(n+2m)=8,则点P的坐标为( )
A.(0.5,﹣0.5) B.(,) C.(2,1) D.(1.5,0.5)
12.如图,直线y=﹣x+8与x轴、y轴分别交于A.B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则点M的坐标是( )
A.(0,4) B.(0,3) C.(﹣4,0) D.(0,﹣3)
二 填空题
13.已知y+1与2﹣x成正比,且当x=﹣1时,y=5,则y与x的函数关系是 .
14.已知直线y=kx+b经过点(2,3),则4k+2b﹣7= .
15.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是 .
16.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为 .
17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为 .
18.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要________s能把小水杯注满.
三 解答题
19.已知正比例函数图象经过点(-1,2).
(1)求此正比例函数的表达式;
(2)画出这个函数图象;
(3)点(2,-5)是否在此函数图象上?
(4)若这个图象还经过点A(a,8),求点A的坐标.
20.已知直线y=(5-3m)x+m-4与直线y=0.5x+6平行,求此直线的解析式.
21.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)画出此函数的图象.
22.如图,在平面直角坐标系xOy中,直线y--x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的表达式.
23.如图是平面直角坐标系及其中的一条直线,该直线还经过点C(3,﹣10).
(1)求这条直线的解析式;
(2)若该直线分别与x轴、y轴交于A.B两点,点P在x轴上,且S△PAB=6S△OAB,求点P坐标.
第十九章 一次函数周周测5试题答案
1.C 2.C 3.C 4.B 5.C 6.B 7.B 8.C 9.B 10.D 11.D 12.D.
13.y=﹣2x+3. 14.﹣1. 15.a<b. 16.﹣6或﹣12. 17.4. 18.5.
19.解:(1)设正比例函数表达式为y=kx,
把(-1,2)带入y=kx中得
-k=2,解得k=-2.
∴正比例函数解析式为y=-2x.
(2)略
(3)把x=2带入y=-2x中得,y=-4不等于5
故点(-2,5)不在y=-2x上.
(4)把x=a,y=8带入y=-2x中,
-2a=8,a=-4.
故A(-4,8)
20.解:∵y=(5-3m)x+2/3m-4与直线y=0.5x+6平行∴5-3m=0.5,解得:m=3/2∴ y=0.5x-3
21.解:(1)点P在边AB,BC,CD上运动时所对应的y与x之间的函数解析式不相同,
故应分段求出相应的函数解析式.
①当点P在边AB上运动,即0≤x<3时,y=0.5×4x=2x;
②当点P在边BC上运动,即3≤x<7时,y=0.5×4×3=6;
③当点P在边CD上运动,即7≤x≤10时,y=0.5×4(10-x)=-2x+20.
(2)函数图象如图所示.
22. (1)∵直线y=-x+8与x轴,y轴分别交于点A,点B,
∴A(6,0),B(0,8).在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10.
∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.
∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).
(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8-y)2,解得y=-12.∴点D的坐标为D(0,-12).
设直线CD的表达式为y=kx-12(k≠0).
∵点C(16,0)在直线y=kx-12上,∴16k-12=0.解得k=.∴直线CD的表达式为y=x-12.
23.解:(1)设直线的解析式为:y=kx+b,
由图可知,直线经过点(﹣1,2),又已知经过点C(3,﹣10),
分别把坐标代入解析式中,得:,解得,∴直线的解析式为:y=﹣3x﹣1;
(2)由y=﹣3x﹣1,令y=0,解得x=﹣;令x=0,解得y=﹣1.
∴A.B两点的坐标分别为A(﹣,0)、B(0,﹣1).S△OAB=OA•OB=××1=.
设点P的坐标为P(m,0),则S△PAB=PA•OB=×|m﹣(﹣)|×1=|m+|,
由S△PAB=6S△OAB,得|m+|=6×,从而得m+=2或m+=﹣2,
∴m=或m=﹣,即点P的坐标为P(,0)或P(﹣,0).
数学八年级下册第十九章 一次函数19.2 一次函数19.2.2 一次函数同步练习题: 这是一份数学八年级下册第十九章 一次函数19.2 一次函数19.2.2 一次函数同步练习题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版八年级下册19.2.2 一次函数课时作业: 这是一份初中数学人教版八年级下册19.2.2 一次函数课时作业,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版八年级下册19.2.2 一次函数同步练习题: 这是一份初中数学人教版八年级下册19.2.2 一次函数同步练习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。