2023年中考数学二轮复习专题训练——统计与概率(含答案)
展开
这是一份2023年中考数学二轮复习专题训练——统计与概率(含答案),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第二模块 《统计与概率》检测题(时间120分钟,满分120分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列调查中,适宜采用抽样调查方式的是( )A.调查我市中学生每天体育锻炼的时间B.调查某班学生对“五个重庆”的知晓率 C.调查一架“歼20”隐形战机各零部件的质量 D.调查广州亚运会100米决赛参赛运动员兴奋剂的使用情况 2.今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为( )A.180, 180, 178 B.180, 178, 178 C.180, 178, 176.8 D.178, 180, 176.8 3.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是 ( ) A.某市八年级学生的肺活量 B.从中抽去的500名学生的肺活量 C.从中抽取的500名学生 D.5004.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时) 4 5 6 7 8 10 户数 1 3 6 5 4 1 这20户家庭日用电量的众数、中位数分别是( ) A.6,6.5 B.6,7 C.6,7.5 D.7,7.55.如图,A、B是数轴上的亮点,在线段AB上任取一点C,则点C到表示-1的点的距离不大于2的概率是( )A. B. C. D.6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A. B. C. D.7.在围棋盒中有颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子( )A.8颗 B.6颗 C.4颗 D.2颗在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( ) 9.袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) 为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A,B,C,D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图,根据统计图中提供的信息,结论错误的是( )A.本次抽样测试的学生人数是40B.在图1中,∠α的度数是126°C.该校九年级有学生500名,估计D级的人数为80D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.2 11.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A. B. C. D.12.某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )年龄192021222426人数11xy21 A.22,3 B.22,4 C.21,3 D.21,4二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)13.如果与的平均数是4,那么+1与+5的平均数是 ;5和5的方差是原来与方差的____________倍.14.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是 .15.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为 .16.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数。如796就是一个“中高数”。若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是 .17.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为 .18.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是 . 三、解答题(本大题共6个小题,共66分,解答应写出文字说明、推理过程或演算步骤.)19.(7分)为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图. (1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率. 20.(7分)2022年5月9日至14日,德州市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表: 请你根据以上图表提供的信息,解答下列问题:(1) m= ,n= ,x= ,y= .(2)在扇形图中,C等级所对应的圆心角是 度.(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人? 21.(8分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<608 0.1660≤x<7012a70≤x<80■ 0.580≤x<903 0.0690≤x≤100bc合计■1 (1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率. 22.(8分)某校为了推进学校均衡发展,计划再购进一批图书,丰富学生的课外阅读。为了解学生对课外阅读的需求情况,学校对学生所喜爱的读物:A.文学,B.艺术,C.科普,D.生活,E.其他,进行了随机抽样调查(规定每名学生只能选其中一类读物),并将调查结果绘制成以下不完整的统计图表. (1) , ,请补全条形统计图;(2)如果全校有2500名学生,请你估计全校有多少名学生喜爱科普读物;(3)学校从喜爱科普读物的学生中选拔出2名男生和3名女生,并从中随机抽取2名学生参加科普知识竞赛,请你用树状图或列表法求出恰好抽到一名男生和一名女生的概率. 23.(8分)某初中学校组织200位同学参加义务植树活动,每人植树的棵数在5至10之间.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率0.10.20.50.2 表2:乙调查三个年级各10位同学植树情况统计表(单位:棵) 每人植树情况678910人数363116频率0.10.20.10.40.2 根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是 棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是 ,正确的数据应该是 .(3)指出哪位同学所抽取的 映此次植树活动情况,并用该样本估计本次活动200位同学一共植树多少棵? 24.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题: (1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率. 25.(10分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率. 26.(10分)今年5月,某大型商业集团所及抽取所属部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A、B、C、D四个等级,并绘制了如下不完整的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)本次评估随机抽取了多少家商业连锁店?(2)请补充完整扇形统计图和条形统计图,并在图中标注相应的数据;(3)从A、B两个等级的商业连锁店中任选2家介绍营销经验,其中至少有一家是A等级的概率. 九年级数学第二轮复习第二模块 《统计与概率》检测题参考答案一、选择题: 123456789101112ACBADCCBBCCD二、填空题:13.7、25 14. 15. 16. 17. 18.三、解答题19.(1)n=(3+2)÷25%=20,月用水量为8m3的户数为20×55%﹣7=4户,月用水量为5m3的户数为20﹣(2+7+4+3+2)=2户,补全图形如下:(2)这20户家庭的月平均用水量为=6.95(m3),因为月用水量低于6.95m3的有11户,所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;(3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,列表如下: abcdea (b,a)(c,a)(d,a)(e,a)b(a,b) (c,b)(d,b)(e,b)c(a,c)(b,c) (d,c)(e,c)d(a,d)(b,d)(c,d) (e,d)e(a,e)(b,e)(c,e)(d,e) 由表可知,共有20种等可能结果,其中满足条件的共有12种情况,所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为=.20.解:(1)20, 8, 0.4, 0.16 (2)57.6 (3)由上表可知达到优秀和良好的共有19+20=39人,人. 21.解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.2470≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P==22.(1)∵抽查的总人数为:32÷10%=320人,∴a=320×25%=80人,b=320-80-48-96-32=64人;补全条形统计图如下:故答案为:80,64;(2)2500×9632096320=750人.答:估计全校喜爱科普读物的学生约有750人.(3)列表得: 女女女男男女---(女,女)(女,女)(男,女)(男,女)女(女,女)---(女,女)(男,女)(男,女)女(女,女)(女,女)---(男,女)(男,女)男(女,男)(女,男)(女,男)---(男,男)男(女,男)(女,男)(女,男)(男,男)---或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)=1220=351220=35. 23.(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是 11,正确的数据应该是12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.24.(1);。(2)略(3),所以该校最喜欢用“微信”进行沟通的学生有人。(2)列出树状图,如图所示,情况共有种情况,其中两人恰好选中同一种沟通方式共有种情况,因此,甲、乙两名同学恰好选中同一种沟通方式的概率为:。25.(1)该班全部人数:12÷25%=48人. (2)48×50%=24,折线统计如图所示: (3)648648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P=26.解:(1)2÷8%=25(家),即本次评估随即抽取了25家商业连锁店;(2)25-2-15-6=2,2÷25×100%=8%,补全扇形统计图和条形统计图,如图所示:(3)画树状图列举如下:共有12个可能的结果,至少有一家是A等级的结果有10个,∴P(至少有一家是A等级)==.
相关试卷
这是一份最新中考数学重难点与压轴题型训练(讲义) 专题05 统计与概率(重点突围),文件包含专题05统计与概率原卷版docx、专题05统计与概率解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份专题25 统计与概率 中考数学一轮复习专题训练(北京专用),共34页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。
这是一份中考数学二轮复习第16讲 统计与概率(题型训练)(教师版),共29页。试卷主要包含了数据的收集与整理,数据分析,统计等内容,欢迎下载使用。