所属成套资源:【高考三轮冲刺】2023年高考数学考前20天冲刺必刷卷(全国甲卷地区专用)(原卷版+解析版)
必刷卷01(甲卷理科)——【高考三轮冲刺】2023年高考数学考前20天冲刺必刷卷(全国甲卷地区专用)(原卷版+解析版)
展开
这是一份必刷卷01(甲卷理科)——【高考三轮冲刺】2023年高考数学考前20天冲刺必刷卷(全国甲卷地区专用)(原卷版+解析版),文件包含必刷卷01甲卷理科高考三轮冲刺2023年高考数学考前20天冲刺必刷卷解析版docx、必刷卷01甲卷理科高考三轮冲刺2023年高考数学考前20天冲刺必刷卷原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
绝密★启用前2023年高考数学考前信息必刷卷01全国甲卷地区专用理科数学全国甲卷的使用将接近于尾声,往后会是新高考的题型。全国甲卷的题型会相对稳定,考试题型为12(单选题)+4(填空题)+6(解答题),其中结构不良型试题是对接新高考地区新增加的题型,主要涉及解三角形与数列两大模块,以解答题的方式进行考查。2023年的对于三视图的考察也将近有尾声,留意的是三视图的组合体与表面积、体积计算相结合。还有立体几何中对圆锥的考察(侧面积的计算也会成一个热点)。其他的题目难度变化不大,但侧重于考察学生运算能力与分析能力。 2022年全国甲卷地区解答题中,虽也有结构不良型方式考查数列与解三角形这两大知识模块。因此,预测2023年新高考地区将以结构不良型方式考查数列与解三角形这两大知识模块中的一个,出现在17题的可能性较大,难度中等偏下,例如本卷第17题。同时应特别注意以数学文化为背景的新情景问题,此类试题蕴含浓厚的数学文化气息,将数学知识、方法等融为一体,注意归纳题目意思。对于数学文化的知识会结合数列及对数(指数)函数知识进行考察,难度不大,但计算能力为考察重点(如第7题)。当然对于有能力的学生应该多阅读《九章算术》,这是个建议。对于函数知识的考察也将会是一个重点:图像、性质、导数、构造函数等,也是考察的热点题型。对于大题中概率统计的考察会侧向与卡方分布(但也要留意分布列)。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数满足(其中为虚数单位),则( )A.3 B. C.2 D.2.已知集合,则( )A. B. C. D.3.某单位职工参加某APP推出的“二十大知识问答竞赛”活动,参与者每人每天可以作答三次,每次作答20题,每题答对得5分,答错得0分,该单位从职工中随机抽取了10位,他们一天中三次作答的得分情况如图:根据图,估计该单位职工答题情况,则下列说法正确的是( )A.该单位职工一天中各次作答的平均分保持一致B.该单位职工一天中各次作答的正确率保持一致C.该单位职工一天中第三次作答得分的极差小于第二次的极差D.该单位职工一天中第三次作答得分的标准差小于第一次的标准差4.棱锥的内切球半径,其中,分别为该棱锥的体积和表面积,如图为某三棱锥的三视图,若每个视图都是直角边长为的等腰直角形,则该三棱锥内切球半径为( )A. B. C. D.5.已知函数的大致图像如图所示,则函数的解析式应为( )A. B.C. D.6.已知,,直线与曲线相切,则的最小值是( )A.16 B.12 C.8 D.47.我国古代数学典籍《九章算术》卷九“勾股”中有一测量问题:“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?这个问题体现了古代对直角三角形的研究,现有一竖立的木头柱子,高4米,绳索系在柱子上端,牵着绳索退行,当绳索与底面夹角为75°时绳索未用尽,再退行米绳索用尽(绳索与地面接触),则绳索长为( )A.米 B.米 C.米 D.米8.如图,圆锥的底面半径为1,侧面展开图是一个圆心角为的扇形.把该圆锥截成圆台,已知圆台的下底面与该圆锥的底面重合,圆台的上底面半径为,则圆台的侧面积为( )A. B. C. D.9.如图,四棱锥的底面为矩形,底面,,,点是的中点,过,,三点的平面与平面的交线为,则下列结论中正确的有( )(1)平面;(2)平面;(3)直线与所成角的余弦值为;(4)平面截四棱锥所得的上、下两部分几何体的体积之比为.A.1个 B.2个C.3个 D.4个10.已知函数在处取极小值,且的极大值为4,则( )A.-1 B.2 C.-3 D.411.已知椭圆的左、右焦点分别为,点在椭圆上,若离心率,则椭圆的离心率的取值范围为( )A. B. C. D.12.定义:设函数在上的导函数为,若在上也存在导函数,则称函数在上存在二阶导函数,简记为.若在区间上,则称函数在区间上为“凹函数”.已知在区间上为“凹函数”,则实数的取值范围为( )A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分.13.已知空间中三点,则点A到直线的距离为__________.14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.15.已知双曲线()的焦距为,右顶点为,抛物线的焦点为,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为___________.16.如图,在由二项式系数所构成的杨辉三角形中,第__________行中从左至右第14与第15个数的比为. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.在①;②;③,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,前n项和为,等比数列的公比为q,且,____________.(1)求数列,的通项公式.(2)记,求数列,的前n项和.注:如果选择多个条件分别解答,按第一个解答计分. 18.相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某市一健身连锁机构对其会员进行了统计,制作成如下两个统计图,图1为会员年龄分布图(年龄为整数),图2为会员一个月内到健身房次数分布扇形图. 若将会员按年龄分为“年轻人”(20岁—39岁)和“非年轻人”(19岁及以下或40岁及以上)两类,将一个月内到健身房锻炼16次及以上的会员称为”健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有是“年轻人”. 年轻人非年轻人合计健身达人 健身爱好者 合计 (1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图的数据,补全上方2×2列联表,并判断是否有95%的把握认为“健身达人”与年龄有关?(2)将(1)中相应的频率作为概率,该健身连锁机构随机选取3名会员进行回访,设3名会员中既是“年轻人”又是“健身达人”的人数为随机变量X,求X的分布列和数学期望.附:.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828 19.如图,在四棱锥P-ABCD中,,且,底面ABCD是边长为2的菱形,.(1)证明:平面PAC⊥平面ABCD;(2)若,求平面PAB与平面PBC夹角的余弦值. 20.已知抛物线C的顶点在坐标原点,焦点在y轴的正半轴上,直线l:经过抛物线C的焦点.(1)求抛物线C的方程;(2)若直线1与抛物线C相交于A、B两点,过A、B两点分别作抛物线C的切线,两条切线相交于点P.求面积的最小值. 21.设函数,.(1)当时,求函数的极值;(2)若函数在上有两个零点,求实数m的取值范围;(3)若对任意的,恒成立,求实数m的取值范围. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.(1)求曲线的直角坐标方程;(2)设曲线与直线交于点,点的坐标为(3,1),求. 23.[选修4-5:不等式选讲](10分)已知函数,,且的解集为.(1)求的值;(2)若都为正数,且,证明:.
相关试卷
这是一份信息必刷卷03(甲卷理科)-高考数学考前信息必刷卷(全国甲卷地区专用),文件包含信息必刷卷03甲卷理科解析版docx、信息必刷卷03甲卷理科原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份信息必刷卷02(甲卷理科)-高考数学考前信息必刷卷(全国甲卷地区专用),文件包含信息必刷卷02解析版docx、信息必刷卷02原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份信息必刷卷01(甲卷理科)-高考数学考前信息必刷卷(全国甲卷地区专用),文件包含信息必刷卷01甲卷理科-高考数学考前信息必刷卷解析版docx、信息必刷卷01甲卷理科-高考数学考前信息必刷卷原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。