所属成套资源:中考数学三轮冲刺《二次函数压轴题》强化练习(含答案)
中考数学三轮冲刺《二次函数压轴题》强化练习三(含答案)
展开
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习三(含答案),共17页。
中考数学三轮冲刺《二次函数压轴题》强化练习三1.如图,已知点(0,)在抛物线C1:y=x2+bx+c上,且该抛物线与x轴正半轴有且只有一个交点A,与y轴交于点B,点O为坐标原点.(1)求抛物线C1的解析式;(2)抛物线C1沿射线BA的方向平移个单位得到抛物线C2,如图2,抛物线C2与x轴交于C,D两点,与y轴交于点E,点M在抛物线C2上,且在线段ED的下方,作MN∥y轴交线段DE于点N,连接ON,记△EMD的面积为S1,△EON的面积为S2,求S1+2S2的最大值;(3)如图3,在(2)的条件下,抛物线C2的对称轴与x轴交于点F,连接EF,点P在抛物线C2上且在对称轴的右侧,满足∠PEC=∠EFO.①直接写出P点坐标;②是否在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,若存在,请直接写出H点的坐标;若不存在请说明理由. 2.如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.(1)求a的值;(2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由. 3.如图所示,抛物线y=﹣x2+bx+3经过点B(3,0),与x轴交于另一点A,与y轴交于点C.(1)求抛物线所对应的函数表达式;(2)如图,设点D是x轴正半轴上一个动点,过点D作直线l⊥x轴,交直线BC于点E,交抛物线于点F,连接AC、FC.①若点F在第一象限内,当∠BCF=∠BCA时,求点F的坐标;②若∠ACO+∠FCB=45°,则点F的横坐标为 . 4.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;(3)点P是“蛋圆”外一点,满足∠BPC=60°,当BP最大时,直接写出点P的坐标. 5.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 6.如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A(4,0),与y轴相交于点B(0,3),在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交线段AB于点N,交抛物线于点P,过P作PM⊥AB,垂足为点M.(1)求这条抛物线的表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,如果,求点P的坐标;(3)如果以N为圆心,NA为半径的圆与以OB为直径的圆内切,求m的值. 7.如图,抛物线y=﹣x2+bx+c经过点A,B,C,已知点A(﹣1,0),点C(0,3).(1)求抛物线的表达式;(2)P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)设E是抛物线上的一点,在x轴上是否存在点F,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求点E,F的坐标;若不存在,请说明理由. 8.在平面直角坐标系xOy中,已知抛物线y=﹣+bx2+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.
0.中考数学三轮冲刺《二次函数压轴题》强化练习三(含答案)答案解析 一 、综合题1.解:(1)∵点(0,)在抛物线C1:y=x2+bx+c上,∴c=.∵该抛物线与x轴正半轴有且只有一个交点A,∴b<0,b2﹣4××=0.∴b=﹣.∴抛物线C1的解析式为y=x2﹣x+.(2)∵y==x2﹣x+=(x﹣1)2,又∵抛物线C1沿射线BA的方向平移个单位得到抛物线C2,∴抛物线C2的解析式为y=(x﹣1)2﹣=x2﹣x+2,令x=0,则y=2,∴E(0,2).∴OE=2.令y=0,则x2﹣x+2=0,解得:x=1或3,∴C(1,0),D(3,0).∴OC=1,OD=3,∴CD=2.∵点M在抛物线C2上,∴设M(m,m2﹣m+2),设直线ED的解析式为y=kx+n,∴,解得:,∴直线ED的解析式为y=﹣x+2.∵MN∥y轴交线段DE于点N,∴N(m,﹣m+2),∵点M在线段ED的下方,∴MN=﹣x+2﹣(m2﹣m+2)=﹣m2+2m,∵S△EMD=S△EMN+S△DMN=×MN•OD=﹣m2+3m,S△EON=OE×m=m,∴S1+2S2=﹣m2+2m+2m=﹣m2+4m=﹣(m﹣2)2+4,∵﹣1<0,∴当m=2时,S1+2S2有最大值4;(3)①点P的坐标为(,),理由:设直线EP与x轴交于点G,如图,∵抛物线C2的解析式为y=(x﹣1)2﹣,∴抛物线的对称轴为直线x=2,∴F(2,0).∴OF=2.∵OC=1,∴CF=OF﹣OC=1.EC==,∵∠PEC=∠EFO,∠PEC=∠PEF+∠CEF,∠EFO=∠PEF+∠G,∴∠CEF=∠G.∵∠ECF=∠GCE,∴△ECF∽△GCE,∴.∴CE2=CF•CG,∴CG=5,∴OG=OC+CG=6,∴G(6,0).设直线EG的解析式为y=ax+2,∴6a+2=0,∴a=﹣.∴直线EG的解析式为y=﹣x+2,∴,解得:或,∴P(,);②在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,理由:过点P作PG⊥抛物线对称轴与点G,PH⊥x轴于点H,连接PD,如图,∵P(,),∴OK=,PK=,∴DK=OK﹣OD=,PG=KF=OK﹣OF=,∴DP==<1,∵DF=1,∴抛物线C2的对称轴上不存在点H,使得HD=DP,HP=PD;当HP=HD时,设H(2,h),则HF=h,过点P作PG⊥抛物线对称轴与点G,如图,则PG=KF=OK﹣OF=,GF=,∵HP=HD,∴=.∴12+h2=+,解得:h=,∴H(2,).综上,在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,点H的坐标为(2,). 2.解:(1)由题意可知,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P的坐标为(m,2m2),∵点P在抛物线F:y=ax2上,∴am2=2m2,∴a=2.(2)∵直线x=t与抛物线E,F分别交于点A,B,∴yA=﹣(t﹣m)2+2m2=﹣t2+2mt+m2,yB=2t2,∴s=yA﹣yB=﹣t2+2mt+m2﹣2t2=﹣3t2+2mt+m2=﹣3(t﹣m)2+m2,∵﹣3<0,∴当t=m时,s的最大值为m2,∵s的最大值为4,∴m2=4,解得m=±,∵m<0,∴m=﹣.(3)存在,理由如下:设点M的坐标为n,则M(n,2n2),∴Q(2n﹣m,4n2﹣2m2),∵点Q在x轴正半轴上,∴2n﹣m>0且4n2﹣2m2=0,∴n=﹣m,∴M(﹣m,m2),Q(﹣m﹣m,0).如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,∴∠K=∠N=90°,∠QPK+∠PQK=90°,∵∠PQG=90°,∴∠PQK+∠GQN=90°,∴∠QPK=∠GQN,∴△PKQ∽△QNG,∴PK:QN=KQ:GN,即PKGN=KQQN.∵PK=﹣m﹣m﹣m=﹣m﹣2m,KQ=2m2,GN=﹣m﹣m,∴(﹣m﹣2m)(﹣m﹣m)=2m2QN,解得QN=+2.∴G(0,﹣﹣2). 3.解:(1)∵B(3,0)在抛物线y=﹣x2+bx+3上,∴﹣32+3b+3=0,∴b=2,∴抛物线所对应的函数表达式为y=﹣x2+2x+3;(2)①作点A关于直线BC的对称点G,AG交BC于点H,过点H作HI⊥x轴于点I,连接CG交抛物线于点F,此时,∠BCF=∠BCA,y=﹣x2+2x+3,令x=0,则y=3,令y=0,则﹣x2+2x+3=0,解得:x=3或=﹣1,∴A(﹣1,0),B(3,0),C(0,3).∴OB=OC,AB=4,∴△OCB是等腰直角三角形,则∠OCB=∠OBC=45°,∴∠HAB=∠OBC=∠AHI=∠BHI=45°,∴HI=AI=BI=AB=2,∴H(1,2),∴G(3,4),设直线CG的解析式为y=kx+3,把G(3,4)代入得:4=3k+3,解得k=,∴直线CF的解析式为y=x+3,∴,解得,∴点F的坐标为(,);②当点F在x轴上方时,如图,延长CF交x轴于N,∵点B(3,0),点C(0,3),∴OB=OC,∴∠OCB=∠OBC=45°,∵A(﹣1,0),∴OA=1,∵∠ACO+∠FCB=45°,∠CBO=∠FCB+∠CNO=45°.∴∠ACO=∠CNO,∵∠COA=∠CON=90°,∴△CAO∽△NCO,∴,∴,∴ON=9,∴点N(9,0),设直线CF的解析式为y=k′x+3,把N(9,0)代入得:0=9k′+3,解得k′=﹣,∴直线CF的解析式为y=﹣x+3,∴﹣x+3=﹣x2+2x+3,∴x1=0(舍去),x2=,∴点的横坐标为;当点F在x轴下方时,如图,设CF与x轴交于点M,∵∠ACO+∠FCB=45°,∠FCB+∠OCM=45°.∴∠ACO=∠OCM,∵OC=OC,∠COA=∠COM=90°,∴△CAO≌△CMO(ASA),∴OM=OA=1,∴点M(1,0),同理直线CF解析式为:y=﹣3x+3.∴﹣3x+3=﹣x2+2x+3,∴x1=0(舍去),x2=5,∴点的横坐标为5.综上所述,点F的横坐标为或5.故答案为:或5. 4.解:(1)∵半圆圆心M的坐标为(1,0),半圆半径为2.∴A(﹣1,0),B(3,0),设抛物线为y=a(x+1)(x﹣3),∵抛物线过D(0,﹣3),∴﹣3=a(0+1)(0﹣3),解得a=1,y=(x+1)(x﹣3),即y=x2﹣2x﹣3(﹣1≤x≤3);连接AC,BC,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴∠ACO+∠OCB=∠OCB+∠OBC=90°,∴∠ACO=∠OBC,∴△ACO∽△CBO,∴,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+;(2)假设点E在x轴上方的“蛋圆”上,设E(m,n),则点F的坐标为(m,﹣n).EF与x轴交于点H,连接EM.∴HM2+EH2=EM2,∴(m﹣1)2+n2=4,…①;∵点F在二次函数y=x2﹣2x﹣3的图象上,∴m2﹣2m﹣3=﹣n,…②;解由①②组成的方程组得:;.(n=0舍去)由对称性可得:;.∴E1(1+,1),E2(1﹣,1),E3(1+,-1),E4(1﹣,-1).(3)如图4,∵∠BPC=60°保持不变,因此点P在一圆弧上运动.此圆是以K为圆心(K在BC的垂直平分线上,且∠BKC=120°),BK为半径.当BP为直径时,BP最大.在Rt△PCR中可求得PR=1,RC=.所以点P的坐标为(1,2). 5.解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣a,∴抛物线顶点D的坐标为(﹣,﹣a);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<. 6.解,(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点C(0,3),∴∴∴抛物线的表达式为y=﹣x2+x+c;(2)如图1,∵PM⊥AB,PE⊥x轴,∴∠PMN=∠PEA=90°,又∵∠PNM=∠ANE,∴△PMN∽△AEN.∴.即.又∵,∴.设直线AB:y=kx+b,又直线AB经过点A(4,0),点B(0,3),∴∴∴y=﹣x+3.∵点P在抛物线y=﹣x2+x+3上,∴设点P(m,﹣m2+m+3)(0<m<4),∵点N在直线y=﹣x+3上,设点N(m,﹣m+3).∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m.又.∴,解得:m1=2,m2=4(不合题意,舍去).∴点P的坐标是(2,).(3)如图2,设OB的中点为点Q,则点Q的坐标(0,),又点N(m,﹣m+3),过点N作NK⊥y轴于点K,则NK=m,KQ=﹣m+3﹣=﹣m+,在Rt△NQK中,QN==,当⊙N与⊙Q内切时,.∴= (4﹣m)﹣,解之得:.∴当⊙N与⊙Q内切时,. 7.解:(1)∵点A(﹣1,0),点C(0,3)在抛物线y=﹣x2+bx+c上,∴解得b=2,c=3.即抛物线的表达式是y=﹣x2+2x+3;(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,∵点A(﹣1,0),∴点B的坐标为(3,0).设过点B、C的直线的解析式为:y=kx+b,解得k=﹣1,b=3.∴过点B、C的直线的解析式为:y=﹣x+3.设点P的坐标为(a,﹣a+3),则点D的坐标为(a,﹣a2+2a+3),∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣a2+3a.∴S△BDC=S△PDC+S△PDB=﹣(a﹣)2+.∴当a=时,△BDC的面积最大,∴点P的坐标为(,).(3)存在.当AC是平行四边形的边时,则点E的纵坐标为3或﹣3,∵E是抛物线上的一点,∴将y=3代入y=﹣x2+2x+3,得x1=0(舍去),x2=2;将y=﹣3代入y=﹣x2+2x+3,得x3=1+,x4=1﹣.∴E1(2,3),E2(1+,﹣3),E3(1﹣,﹣3),则点F1(1,0),F2(2+,0),F3(2﹣,0),当AC为平行四边形的对角线时,则点E的纵坐标为3,∵E是抛物线上的一点,∴将y=3代入y=﹣x2+2x+3,得x1=0(舍去),x2=2;即点E4(2,3).则F4(﹣3,0).由上可得,点E的坐标为:E1(2,3),E2(1+,﹣3),E3(1﹣,﹣3),E4(2,3),与之对应的点F的坐标是:F1(1,0),F2(2+,0),F3(2﹣,0),F4(﹣3,0). 8.解:(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c,得,解得,∴抛物线解析式为y=﹣x2+2x+;(2)∵y=﹣(x﹣2)2+,∴C(2,),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,﹣t),把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,),D点坐标为(2,),∵抛物线平移,使其顶点C(2,)移到原点O的位置,∴抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);综上所述,M点的坐标为(0,)或(0,﹣).
相关试卷
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案),共14页。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十四(含答案),共13页。试卷主要包含了B两点.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十二(含答案),共15页。