所属成套资源:中考数学三轮冲刺《二次函数压轴题》强化练习(含答案)
中考数学三轮冲刺《二次函数压轴题》强化练习十三(含答案)
展开
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十三(含答案),共15页。
中考数学三轮冲刺《二次函数压轴题》强化练习十三1.我们规定:在正方形ABCD中,以正方形的一个顶点A为顶点,且过对角顶点C的抛物线,称为这个正方形的以A为顶点的对角抛物线.(1)在平面直角坐标系xOy中,点在轴正半轴上,点C在y轴正半轴上.①如图1,正方形OABC的边长为2,求以O为顶点的对角抛物线;②如图2,在平面直角坐标系中,正方形OABC的边长为a,其以O为顶点的对角抛物线的解析式为y=x2,求a的值;(2)如图3,正方形ABCD的边长为4,且点A的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD内分别交于点M、P、N、Q,直接写出四边形MPNQ的形状和四边形MPNQ的对角线的交点坐标. 2.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0,),C(1,0),其对称轴与x轴交于点E,顶点坐标为D.(1)求二次函数的表达式;(2)点P为抛物线的对称轴上的一个动点,且在第二象限内,若平面内存在点Q,使得以B,C,P,Q为顶点的四边形为菱形,求点Q的坐标;(3)若M为y轴上的一个动点,连接ME,求MB+ME的最小值. 3.如图,在平面直角坐标系中,抛物线y=x2﹣bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),①求点M的坐标及⊙M的半径;②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由. 4.如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.(1)求抛物线的解析式;(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE的最大值以及此时E点的坐标;(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由. 5.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为 .(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由. 6.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,且AB=3,BC=2,直线y=x-2经过点C,交y轴于点G.(1)点C、D的坐标;(2)求顶点在直线y=x-2上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=x-2平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由. 7.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,4).(1)求此抛物线的解析式;(2)设点P(2,n)在此抛物线上,AP交y轴于点E,连接BE,BP,请判断△BEP的形状,并说明理由;(3)设抛物线的对称轴交x轴于点D,在线段BC上是否存在点Q,使得△DBQ成为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由. 8.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0)和B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)当点P为直线BC下方抛物线上一动点(不与点B、C重合),PM⊥BC于点M,PD⊥AB于点D,交直线BC于点N,当P点的坐标为何值时,PM+PN的值最大?(3)点P在第四象限的抛物线上移动,以PC为边作正方形CPEF、当抛物线的对称轴经过点E时,求出此时点P的坐标.
0.中考数学三轮冲刺《二次函数压轴题》强化练习十三(含答案)答案解析 一 、综合题1.解:(1)①如图1中,设O为顶点的抛物线的解析式为y=ax2,∵过B(2,2),∴2=4a,∴a=,∴所求的抛物线的解析式为y=x2.②如图2中,设B(a,a).则有a=a2,解得a=4或0(舍弃),∴B(4,4),∴OA=4,∴正方形的边长为4.(2)如图3中,结论:四边形MPNQ是菱形,对角线的交点坐标为(5,4).理由:∵正方形ABCD的边长为4,A(3,2),∴B(7,2),C(7,6),D(3,6),∴以A为顶点的对角抛物线为y=(x﹣3)2+2,以B为顶点的对角抛物线为y=(x﹣7)2+2,以C为顶点的对角抛物线为y=﹣(x﹣7)2+6,以D为顶点的对角抛物线为y=﹣(x﹣3)2+6,由可得M(5,3),由可得N(5,5),由可得P(3+2,4),由可得Q(7﹣2,4),∴PM=,PN=,QN=,QM=,∴PM=PN=QN=QM,∴四边形MPNQ是菱形,对角线的交点坐标为(5,4). 2.解:(1)将点A、B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=﹣x2﹣x+;(2)由函数的表达式知,函数的对称轴为x=﹣,故设点P的坐标为(,m).∵C(1,0),B(0,),∴BC2=1+3=4,直线BC的表达式为y=﹣x+,①以C为圆心BC为半径画弧与对称轴有两个交点,此时CP=BC,则(+1)2+m2=4,解得m=±,即此时点P的坐标为P1(﹣,)或P2(﹣,﹣)(舍去);②以B为圆心BC为半径画弧与对称轴有两个交点,此时BP=BC,则()2+(m﹣)2=4,解得m1=+或m2=﹣,即此时点P的坐标为P3(﹣,+)或P4(﹣,﹣)(舍去);③线段BC的垂直平分线与对称轴有一个交点,此时CP=BP,则(+1)2+m2=()2+(﹣m)2,解得m=,即此时点P的坐标为P5(﹣,);故点P的坐标为(﹣,)或(﹣,+)或(﹣,);当点P的坐标为P(﹣,)时,∵BC∥PQ,故直线PQ的表达式为y=﹣x+t,将点P的坐标代入上式得:=﹣×(﹣)+t,解得t=-,故直线PQ的表达式为y=﹣x+-,则设点Q的坐标为(x,y),其中y=﹣x+-,由菱形的性质知,BP的中点即为CQ的中点,由中点公式得:(x﹣)=(0+1),解得x=﹣,当x=﹣时,y=﹣x+-=+,故点Q的坐标为(﹣,+),同理可得,点P(﹣,+)或(﹣,)时,对应的点Q的坐标分别为(,)或(,),综上所述,满足条件的点Q的坐标为(﹣,+)或(,)或(,);(3)如图,连接BC,作EH⊥BC于H,交OB于M,此时BM+ME最小.理由:∵OC=1,OB=,∴tan∠CBO=,∴∠CBO=30°,∴MH=BM,∴BM+ME=MH+EM=EH,∴此时BM+ME最短,在Rt△CEH中,∵∠CHE=90°,CE=,∠HCE=60°,∴EH=,∴BM+ME的最小值为. 3.解:(1)c=﹣2,将点B的坐标代入抛物线表达式得:解b=,∴抛物线的解析式为y=x2﹣x﹣2;(2)当x=5时,y=x2﹣x﹣2=3,故D的坐标为(5,3),令y=0,则x=4(舍去)或﹣1,故点A(﹣1,0),如图①,连接BD,作BN⊥AD于N,∵A(﹣1,0),B(4,0),C(0,﹣2),∴AD=3,BD=,AB=5,∵S△ABD==,∴BN=,∴sin∠BDN=,∴∠BDN=45°;∴∠ADB=∠BDN=45°;(3)①如图②,连接MA,MB,∵∠ADB=45°,∴∠AMB=2∠ADB=90°,∵MA=MB,MH⊥AB,∴AH=BH=HM=,∴点M的坐标为(,)⊙M的半径为;②如图③,连接MQ,MB,∵过点B作⊙M的切线交1于点P,∴∠MBP=90°,∵∠MBO=45°,∴∠PBH=45°,∴PH=HB=2.5,∵=,=,∵∠HMQ=∠QMP,∴△HMQ∽△QMP,∴=,∴在点Q运动过程中的值不变,其值为. 4.解:(1)∵点A(﹣1,0),C(2,0),∴AC=3,OC=2,∵AC=BC=3,∴B(2,3),把A(﹣1,0)和B(2,3)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=﹣x2+2x+3;(2)∵直线AB经过点A(﹣1,0),B(2,3),设直线AB的解析式为y=kx+b′,∴,解得:,∴直线AB的解析式为:y=x+1,如图,过点E作EF∥y轴交线段AB于点F,∴设点E(t,﹣t2+2t+3),则F(t,t+1),∴EF=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),∴此时S△ABE最大,S△ABE=•EF•(xB−xA)=××(2+1)=.(3)在问题(2)的条件下,存在点E使得△ABE为直角三角形;设E(m,﹣m2+2m+3),①当点A为直角顶点,过点A作AB的垂线,与AB之间的抛物线无交点,故不可能存在点E使得△ABE为以点A为直角顶点的直角三角形,②当点B为直角顶点,如下图,此时∠EBA=90°,过点E作EG⊥CB,交CB延长线于点G,∵BC⊥x轴于点C,且AC=BC,∴△ABC是等腰直角三角形,∠ABC=45°,∴∠EBG=45°,∴△BEG是等腰直角三角形,EG=BG,∵EG的长为点E与直线BC的距离,即2﹣m,且BG=CG﹣BC=﹣m2+2m+3﹣3=﹣m2+2m,∴2﹣m==﹣m2+2m,解得m=1或m=2(舍),∴E(1,4);③如下图,此时∠AEB=90°,作EM∥x轴,交CB的延长线于点M,过点A作AN⊥x轴交ME的延长线于点N,∴∠BEM+∠AEN=90°,∵在Rt△AEN中,∠EAN+∠AEN=90°,∴∠BEM=∠EAN,∴△AEN∽△BEM,∴BM:EN=EM:AN,∴(﹣m2+2m):(m+1)=(2﹣m):(﹣m2+2m+3),即﹣m(2﹣m)(m+1)(m﹣3)=(2﹣m)(m+1),∵2﹣m≠0,m+1≠0,∴m2﹣3m+1=0,解得m=或m=(舍).∴E(,)综上,根据问题(2)的条件,存在点E(1,4)或(,)使得△ABE为直角三角形. 5.解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C∴ 解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴xD=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴yD=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大 ∴yE=()2﹣﹣6=﹣5∴点E坐标为(,﹣5)时,△BCE面积最大,最大值为3.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=2①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣). 6.解:(1)令y=2,2=y=x-2,解得x=4,则OA=4﹣3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=2.5,令x=,则y=×﹣2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x﹣)2﹣,把点D(1,2)代入得,a=,∴解析式为y=(x﹣)2﹣;(3)设顶点E在直线上运动的横坐标为m,则E(m,m﹣2)(m>0)∴可设解析式为y=(x﹣m)2﹣m﹣2,①当FG=EG时,FG=EG=2m,则F(0,2m﹣2),代入解析式得:m2﹣m﹣2=2m﹣2,得m=0(舍去),m=﹣,此时所求的解析式为:y=(x﹣﹣)2﹣3﹣;②当GE=EF时,FG=2m,则F(0,2m﹣2),代入解析式得:m2﹣m﹣2=2m﹣2,解得m=0(舍去),m=,此时所求的解析式为:y=(x﹣)2﹣;③当FG=FE时,不存在. 7.解:(1)∵抛物线上A、B、C三点坐标代入抛物线解析式y=ax2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+3x+4. (2)结论:△BEP为等腰直角三角形,理由如下:∵点P(2,n)在此抛物线上,∴n=﹣4+6+4=6,∴P点坐标为(2,6).设直线AP解析式为y=kx+b,把A、P两点坐标代入可得,解得,,∴直线AP的解析式为y=2x+2,(令x=0可得y=2,则E点坐标为(0,2).∵B(4,0),P(2,6),∴BP=2,BE=2,EP=2,∴BE2+EP2=20+20=40=BP2,且BE=EP,∴△BEP为等腰直角三角形. (3)存在.∵y=﹣x2+3x+4=﹣(x﹣)2+,∴顶点的坐标为(,),∵OB=OC=4,∴BC=4,∠ABC=45°. 以下分两种情况:①若BQ=DQ,BQ1⊥DQ1,∠BDQ=45°,如图,过点Q1作Q1M⊥OB,垂足为M,∵BQ1=DQ1,BD=4﹣=,∴BM=Q1M=,OM=4﹣=,∴Q1的坐标为Q1(,). ②若DQ2=BD=,DQ2⊥BD,易得BC所在的直线解析式为y=﹣x+4,代入x=,得y=﹣+4=,∴DQ2=BD=,∴△BDQ2是等腰直角三角形,所以Q2的坐标为Q2(,),综上所述,Q的坐标为Q1(,)或Q2(,).8.解:(1)依题意得:,解得:,∴抛物线的解析式为y=x2﹣x﹣3;(2)设直线BC的解析式为y=kx+m,∴,解得:,∴y=x﹣3.设P点坐标为(n,n2﹣n﹣3),N点的坐标为(n,n﹣3),∴PN=﹣n2﹣n,∵PM⊥BC,PD⊥AB,∴∠PMN=∠PDB,∵∠PNM=∠BND,∴∠MPN=∠OBC,∵OB=4,OC=3,∴BC=5,∴PM=PNcos∠MPN=PNcos∠OBC=PN,∴PM+PN=PN=﹣n=﹣.即当n=2时,PM+PN的值最大,此时P点坐标为(2,﹣3).(3)过点P作PK⊥y轴于K,交抛物线的对称轴于G,如图,∵四边形PEFC为正方形,∴PE=PC,∠EPC=90°∵∠PGE=∠PKC=90°,∴∠PEG=∠CPK,∴△PEG≌△CPK(AAS),∴CK=PG,设P(x,x2﹣x﹣3),抛物线的对称轴为直线x=1,则G(1,x2﹣x﹣3),K(0,x2﹣x﹣3),∴PG=|1﹣x|,CK=|x2﹣x﹣3+3|=|x2﹣x|,∴|1﹣x|=|x2﹣x|,解方程1﹣x=x2﹣x得,x1=,x2=﹣2(舍去);解方程x﹣1=x2﹣x得,x1=,x2=﹣4(舍去);∴P点坐标为(,﹣)或(,﹣).
相关试卷
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案),共14页。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十四(含答案),共13页。试卷主要包含了B两点.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十二(含答案),共15页。