真题重组卷02——2023年高考数学真题汇编重组卷(上海专用)
展开绝密☆启用前
冲刺2023年高考数学真题重组卷02
数学(上海地区专用)
考生注意:
1、本试卷共21道试题,满分150分,考试时间120分钟.
2、本试卷分设试卷和答题卡.试卷包括试题与答题要求,作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.
3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.
一、填空题(本大题共有12题,满分54分,第1—6题每题4分,第7—12题每题5分)考生应在答题纸的相应位置直接填写结果.
1、(2012年上海高考真题)函数的最小正周期是________.
2、(2016·上海·统考高考真题)设,则不等式的解集为_______.
3、(2021年上号高考真题)已知,则________.
4、(2018•上海高考真题)双曲线﹣y2=1的渐近线方程为 ± .
5、(2014·上海·高考真题)某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为___.
6、(2019年上海高考真题)在的展开式中,常数项等于 15 .
7、(2017·上海·统考高考真题)如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________
8、(2011·上海·高考真题)在极坐标系中,直线与直线的夹角大小为____________ .
9、(2015·上海·统考高考真题)在报名的名男教师和名女教师中,选取人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为________(结果用数值表示).
10、(2018•上海高考真题)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为 ﹣3 .
11、(2013·上海·高考真题)在平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为__________
12、(2012·上海·高考真题)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是 .
二、
三、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.
13、(2011·上海·高考真题)若,且,则下列不等式中,恒成立的是
A. B. C. D.
14、(2012·上海·高考真题)在中,若,则的形状是 ( )
A.钝角三角形 B.直角三角形
C.锐角三角形 D.不能确定.
15、(2016·上海·统考高考真题)设,.若对任意实数x都有,则满足条件的有序实数对(a,b)的对数为.
A.1 B.2 C.3 D.4
16、(2021年上海高考真题)已知两两不同的满足,且
,若,则下列不等式中恒成立的是( )
三、解答题(本大题共5小题,满分76分)
17、(2021年上海高考真题)如图,在正三棱锥中,.
(1)若的中点为,的中点为,求与的夹角;
(2)求的体积.
18、(2017·上海·统考高考真题)已知函数.
(1)求的单调递增区间;
(2)设为锐角三角形,角所对边,角所对边,若,求的面积.
19、(2019年上海高考真题)已知数列,,前项和为.
(1)若为等差数列,且,求;
(2)若为等比数列,且,求公比的取值范围.
20、(2012·上海·高考真题)在平面直角坐标系中,已知双曲线.
(1)设F是C的左焦点,M是C右支上一点. 若|MF|=2,求过M点的坐标;
(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的
面积;
(3)设斜率为的直线l2交C于P、Q两点,若l与圆相切,
求证:OP⊥OQ;
21、(2016·上海·统考高考真题)已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
真题重组卷02——2023年高考数学真题汇编重组卷(新高考地区专用): 这是一份真题重组卷02——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷022023年高考数学真题汇编重组卷解析版docx、真题重组卷022023年高考数学真题汇编重组卷参考答案docx、真题重组卷022023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
真题重组卷04——2023年高考数学真题汇编重组卷(天津专用): 这是一份真题重组卷04——2023年高考数学真题汇编重组卷(天津专用),文件包含真题重组卷04天津卷解析版docx、真题重组卷04天津卷参考答案docx、真题重组卷04天津卷原卷版docx等3份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
真题重组卷02——2023年高考数学真题汇编重组卷(天津专用): 这是一份真题重组卷02——2023年高考数学真题汇编重组卷(天津专用),文件包含真题重组卷02天津卷解析版docx、真题重组卷02天津卷参考答案docx、真题重组卷02天津卷原卷版docx等3份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。