- 新教材2023年高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念第2课时函数的概念二课件新人教A版必修第一册 课件 0 次下载
- 新教材2023年高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.2函数的表示法第1课时函数的表示法课件新人教A版必修第一册 课件 0 次下载
- 新教材2023年高中数学第3章函数的概念与性质3.2函数的基本性质3.2.1单调性与最大小值第1课时函数的单调性课件新人教A版必修第一册 课件 0 次下载
- 新教材2023年高中数学第3章函数的概念与性质3.2函数的基本性质3.2.1单调性与最大小值第2课时函数的最大小值课件新人教A版必修第一册 课件 0 次下载
- 新教材2023年高中数学第3章函数的概念与性质3.2函数的基本性质3.2.2奇偶性课件新人教A版必修第一册 课件 0 次下载
人教A版 (2019)必修 第一册3.1 函数的概念及其表示教课内容课件ppt
展开3.1 函数的概念及其表示
3.1.2 函数的表示法
如果函数在定义域的不同的范围内,有着不同的对应关系,则称这样的函数为分段函数.想一想:分段函数对于自变量x的不同取值区间对应关系不同,那么分段函数是一个函数还是几个函数?提示:分段函数是一个函数而不是几个函数.
A.2 B.3 C.4 D.5[解析] ∵-2<0,∴f(-2)=-(-2)=2,又2>0,∴f[f(-2)]=f(2)=22=4.
2.函数y=|x|的图象是( )
∴f(-3)=1,∴f[f(-3)]=f(1)=-3.
(1)求f(-4),f(3),f[f(-2)];(2)若f(a)=10,求a的值.[分析] 分段函数的解析式⇒求函数值或已知函数值列方程求字母的值.
[解析] (1)f(-4)=-4+2=-2,f(3)=2×3=6,f(-2)=-2+2=0,f[f(-2)]=f(0)=02=0.(2)当a≤-1时,a+2=10,可得a=8,不符合题意;当a≥2时,2a=10,可得a=5,符合题意;综上可知,a=5.
[归纳提升] 求分段函数函数值的方法(1)先确定要求值的自变量属于哪一段区间.(2)然后代入该段的解析式求值,直到求出值为止.当出现f[f(x0)]的形式时,应从内到外依次求值.
(1)用分段函数的形式表示函数f(x);(2)画出函数f(x)的图象;(3)写出函数f(x)的值域.[分析] 先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,再利用描点法作出函数图象.
(2)函数f(x)的图象如图所示.(3)由(2)知,f(x)在(-2,2]上的值域为[1,3).
[归纳提升] 分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.
(1)画出函数的图象;(2)若f(x)=1,求x的值.
[解析] (1)函数图象如图所示. (2)由f(x)=1和函数图象综合判断可知,当x∈(-∞,1)时,得f(x)=-2x+1=1,解得x=0;
如图,在边长为4的正方形ABCD的边上有一点P,沿折线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为x,△APB的面积为y.(1)求y关于x的函数关系式y=f(x);(2)画出y=f(x)的图象;(3)若△APB的面积不小于2,求x的取值范围.[分析] (1)点P位置不同△ABP的形状一样吗?(2)注意该函数的定义域.
(2)y=f(x)的图象如图所示. (3)即f(x)≥2,当0≤x≤4时,2x≥2,∴x≥1,当8
(1)求出2022年的利润W(x)(万元)关于年产量x(千部)的函数关系式;(利润=销售额-成本)(2)2022年产量为多少(千部)时,企业所获利润最大?最大利润是多少?[解析] (1)由题意可知,销售x(千部)手机获得的销售额为0.6×1 000x=600x(万元)当0
[正解] 函数f(x)的定义域为(-∞,0)∪[0,+∞),即(-∞,+∞),∴函数f(x)的定义域为(-∞,+∞).
建模应用能力数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题,提出问题,分析问题,构建模型,求解结论,验证结果并改进模型,最终解决实际问题. 数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式.数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力.
在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验.学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识.
(1)试将自行车厂的利润y表示为月产量x的函数;(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?[分析] 总成本=固定成本+可变成本,本题中,固定成本为20 000元,可变成本为100x元.
[归纳提升] 求分段函数的最值,应分别计算各段函数的最值,然后再比较它们的大小,确定最后的最值.
1.函数f(x)=|x-1|的图象是( )
A.RB.[0,+∞)C.[0,3] D.[0,2]∪{3}[解析] 作出y=f(x)的图象,如图所示.由图象知,f(x)的值域是[0,2]∪{3},故选D.
人教A版 (2019)必修 第一册3.1 函数的概念及其表示教课ppt课件: 这是一份人教A版 (2019)必修 第一册3.1 函数的概念及其表示教课ppt课件,共36页。PPT课件主要包含了不同的对应关系,答案C,答案0等内容,欢迎下载使用。
必修 第一册3.1 函数的概念及其表示集体备课ppt课件: 这是一份必修 第一册3.1 函数的概念及其表示集体备课ppt课件,共41页。PPT课件主要包含了素养·目标定位,课前·基础认知,课堂·重难突破,随堂训练,二求函数解析式,三分段函数问题,典例剖析,学以致用,答案8,观察下表等内容,欢迎下载使用。
人教A版 (2019)必修 第一册3.1 函数的概念及其表示多媒体教学ppt课件: 这是一份人教A版 (2019)必修 第一册3.1 函数的概念及其表示多媒体教学ppt课件,共38页。PPT课件主要包含了预学案,共学案,答案B,答案-3,答案D,答案C等内容,欢迎下载使用。