所属成套资源:人家部编版七年级上册同步教学课件PPT
- 数学:第三章一元一次方程复习课件(人教新课标七年级上) 课件 0 次下载
- 30《一元一次方程》全章复习与巩固(基础)巩固练习 试卷 0 次下载
- 28实际问题与一元一次方程(二)(基础)知识讲解 试卷 1 次下载
- 24一元一次方程的解法(基础)巩固练习 试卷 0 次下载
- 22方程的意义(基础)巩固练习 试卷 1 次下载
数学人教版3.4 实际问题与一元一次方程课时作业
展开
这是一份数学人教版3.4 实际问题与一元一次方程课时作业,共4页。
实际问题与一元一次方程(二)(提高)知识讲解【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;(2)熟悉利润,存贷款,数字及方案设计问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题方程解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答. 要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型(续)1.利润问题 (1) (2) 标价=成本(或进价)×(1+利润率) (3) 实际售价=标价×打折率(4) 利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题 (1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×3.数字问题 已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.4.方案问题 选择设计方案的一般步骤: (1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、利润问题1.(2016春•盐城校级月考)某商店在一笔交易中卖了两个进价不同的随身听,售价都为132元,按成本计算,其中一个盈利20%,另一个盈利10%,则该商店在这笔交易中共赚了 元.【思路点拨】根据题意分别求出两个随身听的进价,进而求出答案.【答案】34.【解析】解:设一个的进价为x元,根据题意可得:x(1+20%)=132,解得:x=110,设另一个的进价为y元,根据题意可得:y(1+10%)=132,解得:x=120,故该商店在这笔交易中共赚了:132+132﹣120﹣110=34(元).故答案为:34.【总结升华】此题主要考查了一元一次方程的应用,正确理清进价与利润之间的关系是解题关键. 类型二、存贷款问题2.某公司从银行贷款20万元,用来生产某种产品,已知该贷款的年利率为15%(不计复利),每个产品成本是3.2元,售价是5元,应纳税款为销售款的10%.如果每年生产10万个,并把所得利润(利润=售价-成本-应纳税款)用来偿还贷款,问几年后能一次性还清?【答案与解析】 解:设x年后能一次性还清贷款,根据题意, 得(5-3.2-5×10%)·10x=20+20×15%x. 解之,得x=2. 答:所以2年后能一次性还清贷款.【总结升华】解答本题利用了类比的数学方法,把贷款与存款相类比,贷款金额相当于存款本金,贷款的年利率相当于存款的年利率,每年产品的利润=售价-成本-应纳税款,产品的总利润等于本息和.举一反三: 【变式】小华父母为了准备她上大学时的16000元学费,在她上初一时参加教育储蓄,准备先存一部分,等她上大学时再贷一部分.小华父母存的是六年期(年利率为2.88%),上大学贷款的部分打算用8年时间还清(年贷款利息率为6.21%),贷款利息的50%由政府补贴.如果参加教育储蓄所获得的利息与申请贷款所支出的利息相等,小华父母用了多少钱参加教育储蓄?还准备贷多少款?【答案】解:设小华父母用x元参加教育储蓄,依题意, x×2.88%×6=(16000-x)×6.21%×8×50%, 解得, x≈9436(元) 16000-9436=6564(元).答:小华父母用9436元参加教育储蓄,还准备贷6564元.类型三、数字问题3.(2015春•镇巴县校级月考)甲数是2013,甲数是乙数的还多1.设乙数为x,则可列方程为( ) A.4(x﹣1)=2013 B.4x﹣1=2013 C. x+1=2013 D. (x+1)=2013【答案】C.解:设乙数为x,由题意得,x+1=2013.【总结升华】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是设出未知数,找出合适的等量关系,列出方程.类型四、方案设计问题4.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?【答案与解析】解:(1)若选择方案1,依题意,总利润=2000元×4+500元×(9-4)=10500元.(2)若选择方案2.设将x吨鲜奶制成奶片,则用(9-x)吨鲜奶制成酸奶销售,依题意得,,解得.当时,.总利润=2000元×1.5+1200元×7.5=12000元.∵ 12000>10500,∴ 选择方案2较好.答:选择方案2获利最多,只要在四天内用7.5吨鲜奶加工成酸奶,用1.5吨的鲜奶加工成奶片.【总结升华】如果题目中的数量关系较复杂,常借助列表,画线段图,示意图等手段帮助我们理顺题目中的数量关系,列出方程.例如本题方案2中,设将x吨鲜奶制成奶片,则列表如下: 每吨利润吨数工效天数酸奶12003奶片20001合计 9 4从表中能一目了然条件之间的关系,从而,得到等量关系.举一反三:【变式1】商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价比A型冰箱高出10%,但每日耗电量却为0.55度.现将A型冰箱打折出售(打一折后的售价为原价的),问商场将A型冰箱打几折,消费者买A型冰箱10年的总费用与B型冰箱10年的总费用相当(每年365天,每度电按0.40元计算).【答案】解:设商场A型冰箱打x折,依题意,买A型冰箱需2190×元,10年的电费是365×10×1×0.4元;买B型冰箱需2190×(1+10%)元,10年的电费是365×10×0.55×0.4元,依题意,得:2190×+365×10×1×0.4=2190×(1+10%)+365×10×0.55×0.4 解得:x=8 答:商场将A型冰箱打8折出售,消费者买A型冰箱10年的总费用与B型冰箱10年的总费用相当.【变式2】某市居民生活用电的基本价格为每度0.40元,若每月用电量超过a度,超出部分按基本电价的70%收费. (1)某户五月份用电84度,共交电费30.72元,求a;(2)若该户六月份的电费平均每度0.36元,求六月份共用电多少度?应交电费多少元?【答案】解: (1)根据题意,得0.40a+0.40×70%×(84-a)=30.72. 解得:a=60. (2)设该户六月份共用电x度,因0.36<0.40,所以x>60,于是超出部分电量为(x-60)度,依题意,得:0.40×60+0.4×70%(x-60)=0.36x. 解得:x=90. 所以0.36x=0.36×90=32.40元. 答:(1)a=60;(2)该用户六月份共用电90度,应交电费32.40元.
相关试卷
这是一份数学八年级上册11.3.1 多边形随堂练习题,共6页。
这是一份人教版七年级上册4.3.1 角课后练习题,共10页。
这是一份初中数学4.2 直线、射线、线段课后作业题,共7页。