2023年中考考前押题密卷:数学(陕西卷)(全解全析)
展开
这是一份2023年中考考前押题密卷:数学(陕西卷)(全解全析),共24页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2023年陕西中考考前押题密卷数学·全解全析第Ⅰ卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.计算的结果是( )A.-3 B.3 C.-12 D.12【答案】B【分析】直接计算即可得到答案.【详解】==3故选:B.【点睛】本题考查有理数的乘法,解题的关键是熟练掌握有理数乘法的知识.2.如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是( )A. B. C. D.【答案】A【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,可得如下图形:故选:A.【点睛】本题考查三视图、熟练掌握三视图的定义是解决问题的关键.3.下列运算中,正确的是( )A. B.C. D.【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.4.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论一定正确的是( )A.OB=OD B.AB=BC C.AC⊥BD D.∠ABD=∠CBD【答案】A【分析】根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.【详解】解:平行四边形对角线互相平分,A正确,符合题意;
平行四边形邻边不一定相等,B错误,不符合题意;
平行四边形对角线不一定互相垂直,C错误,不符合题意;
平行四边形对角线不一定平分内角,D错误,不符合题意.
故选:A.【点睛】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.5.一副三角板如图所示摆放,若,则的度数是( )A.80° B.95° C.100° D.110°【答案】B【分析】由三角形的外角性质得到∠3=∠4=35°,再根据三角形的外角性质求解即可.【详解】解:如图,∠A=90°-30°=60°,∵∠3=∠1-45°=80°-45°=35°,∴∠3=∠4=35°,∴∠2=∠A+∠4=60°+35°=95°,故选:B.【点睛】本题考查了三角形的外角性质,正确的识别图形是解题的关键.6.已知,是等腰三角形的两边长,且,满足,则此等腰三角形的周长为( ).A.8 B.6或8 C.7 D.7或8【答案】D【分析】先根据非负数的性质列式求出a、b的值,再分a的值是腰长与底边两种情况讨论求解.【详解】解:∵,∴解得,①2是腰长时,三角形的三边分别为2、2、3,能组成三角形,周长=2+2+3=7;②2是底边时,三角形的三边分别为2、3、3,能组成三角形,周长=2+3+3=8,所以该等腰三角形的周长为7或8.故选:D.【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出a、b的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.7.如图,是的外接圆,,若的半径为2,则弦的长为( )A.4 B. C.3 D.【答案】B【分析】过点作,交于点,根据圆周角定理以及垂径定理可得结果.【详解】解:过点作,交于点,是的外接圆,,,又,,,,在中,,,,,故选:.【点睛】本题考查了垂径定理,圆周角定理,勾股定理,熟知相关性质定理是解本题的关键.8.已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )A.或2 B. C.2 D.【答案】B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,∵得到的抛物线正好经过坐标原点∴+1即解得:或∵抛物线的对称轴在轴右侧∴>0∴<0∴故选:B.【点睛】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题(本大题共5小题,每小题3分,共15分)9.在中无理数的个数是_______个.【答案】1【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】解:0整数,是有理数;是分数,是有理数;是有限小数,是有理数;是无限不循环小数,是无理数;是有理数,所以无理数有1个.故答案为:1【点睛】本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行:初中范围内学习的无理数主要有三类:①含的一部分数,如等;②开方开不尽的数,如等;③虽有规律但是无限不循环的数,如0.1010010001…,等.10.如图,实数,,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为________.【答案】-3【分析】先求出D点表示的数,再得到m的取值范围,最后在范围内找整数解即可.【详解】解:∵点B关于原点O的对称点为D,点B表示的数为,∴点D表示的数为,∵A点表示,C点位于A、D两点之间,∴,∵m为整数,∴;故答案为:.【点睛】本题考查了数轴上点的特征,涉及到相反数的性质、对无理数进行估值、确定不等式组的整数解等问题,解决本题的关键是牢记相关概念和性质,本题蕴含了数形结合的思想方法.11.如图,矩形中,,,对角线的垂直平分线交于点、交于点,则线段的长为 __.【答案】【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.【解析】解:如图:四边形是矩形,,又,,,是的垂直平分线,,,又,,,,解得,,四边形是矩形,,,,是的垂直平分线,,,在和中,,,,.故答案为:.【点睛】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.12.已知点A为直线上一点,过点A作轴,交双曲线于点B.若点A与点B关于y轴对称,则点A的坐标为_____________.【答案】或【分析】设点A坐标为,则点B的坐标为,将点B坐标代入,解出x的值即可求得A点坐标.【详解】解:∵点A为直线上一点,∴设点A坐标为,则点B的坐标为,∵点B在双曲线上,将代入中得:,解得:,当时,,当时,,∴点A的坐标为或,故答案为:或.【点睛】本题主要考查一次函数与反比例函数综合问题,用到了关于一条直线的两个点的坐标关系,熟知对称点坐标的关系是解决问题的关键.13.如图,的顶点C在等边的边上,点E在的延长线上,G为的中点,连接.若,,则的长为_______.【答案】【解析】【分析】延长DC交EF于点M(图见详解),根据平行四边形与等边三角形的性质,可证△CFM是等边三角形,BF=BE=EF=BC+CF=5,可求出CF=CM=MF=2,可得C、G是DM和DE的中点,根据中位线的性质,可得出CG=,代入数值即可得出答案.【详解】解:如下图所示,延长DC交EF于点M,,,平行四边形的顶点C在等边的边上,,是等边三角形,.在平行四边形中,,,又是等边三角形, ,. G为的中点,,是的中点,且是的中位线,.故答案为:.【点睛】本题考查了平行四边形的性质、等边三角形的性质、中位线等知识点,延长DC交EF于点M,利用平行四边形、等边三角形性质求出相应的线段长,证出是的中位线是解题的关键.三、(本大题共13小题,满分81分)14.(5分)计算:.【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.15.(5分)解不等式组:.【答案】x2【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式3x﹣1x+1,得:x1, 解不等式x+44x﹣2,得:x2,∴不等式组的解集为x2.【点睛】本题考查了解一元一次不等式组,熟悉“解一元一次不等式的方法和确定不等式组解集的方法”是解答本题的关键.16.(5分)先化简,再求值:,其中.【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a值代入求解即可.【详解】解:,∵,∴原式.【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算17.(5分)如图,在中,.尺规作图:作的外接圆;作的角平分线交于点D,连接AD.(不写作法,保留作图痕迹)
【答案】见解析;【分析】根据外接圆,角平分线的作法作图即可;【详解】作图如下:【点睛】本题考查了三角形的外接圆,角平分线,以及利用圆周角与圆心角的关系是解题的关键.18.(5分)如图,点E、F在线段BC上,,,,证明:.【答案】见解析【分析】利用AAS证明△ABE≌△DCF,即可得到结论.【详解】证明:∵,∴∠B=∠C,∵,,∴△ABE≌△DCF(AAS),∴.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.19.(5分)在10×10网格中建立如图所示的平面直角坐标系,△ABC的顶点坐标分别是A(1,2),B(4,4),C(3,1).(1)画出△ABC关于y轴成轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2,并写出点C2的坐标【解析】解:(1)如图所示,
(2)如图所示,点C2的坐标为(-3,-1).
20.(5分)6.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 .(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).【答案】(1);(2)【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.【点睛】本题考查了用列表法或树状图法求随机事件的概率,解题时需要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角 (点A,D与N在一条直线上),求电池板离地面的高度的长.(结果精确到1米;参考数据:)【答案】8米【分析】过E作EF⊥MN于F,连接EB,设MF=x米,可证四边形FNDE,四边形FNAB均是矩形,设MF=EF=x,可求FB= x+3.5,由tan∠MBF=,解得 米,可求MN=MF+FN=6.5+1.6≈8米.【详解】解:过E作EF⊥MN于F,连接EB,设MF=x米,∵∠EFN=∠FND=∠EDN=∠A=90°,∴四边形FNDE,四边形FNAB均是矩形,∴FN=ED=AB=1.6米,AD=BE=3.5米,∵∠MEF=45°,∠EFM=90°,∴MF=EF=x,∴FB=FE+EB=x+3.5,∴tan∠MBF=,∴解得 米,经检验米符合题意,∴MN=MF+FN=6.5+1.6=8.1≈8米.【点睛】本题考查矩形判定与性质,锐角三角函数,简单方程,掌握矩形判定与性质,锐角三角函数,简单方程是解题关键.22.(7分)甲、乙两人沿同一直道从A地去B地,甲比乙早出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离(单位:m)与时间x(单位:)之间的函数关系如图所示.
(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图;(2)若甲比乙晚到达B地,求甲整个行程所用的时间.【答案】(1)图像见解析;(2)12【分析】(1)根据甲乙的速度关系和甲比乙提前一分钟出发即可确定乙的函数图像;(2)设甲整个行程所用的时间为x,甲的速度为v,利用甲乙的路程相同建立方程,解方程即可.【详解】解:(1)作图如图所示: ;(2)设甲整个行程所用的时间为x,甲的速度为v,∴,解得:,∴甲整个行程所用的时间为12.【点睛】本题考查了一次函数的实际应用,要求学生能根据问题情境绘制出函数图像,能建立相等关系,列出方程等.23.(7分)6.某合作社为帮助农民增收致富,利用网络平台销售当地的一种农副产品.为了解该农副产品在一个季度内每天的销售额,从中随机抽取了20天的销售额(单位:万元)作为样本,数据如下:16,14,13,17,15,14,16,17,14,14,15,14,15,15,14,16,12,13,13,16(1)根据上述样本数据,补全条形统计图;(2)上述样本数据的众数是_____,中位数是_____;(3)根据样本数据,估计这种农副产品在该季度内平均每天的销售额.【答案】(1)见解析;(2)14万元,14.5万元;(3)14.65万元【分析】(1)分别找出数据“14”和“16”的频数即可补全条形统计图;(2)根据众数和中位数的定义进行解答即可;(3)根据加权平均数的计算方法求出样本平均数,再估计这种农副产品在该季度内平均每天的销售额即可.【详解】解:(1)根据所给的20个数据得出:销售额是14万元的有6天;销售额是16万元的有4天;补全条形统计图如下:(2)在数据:16,14,13,17,15,14,16,17,14,14,15,14,15,15,14,16,12,13,13,16中,销售额是14万元的最多,有6天,故众数是14万元;将数据按大小顺序排列,第10,11个数据分别是14万元和15万元,所以,中位数是:(万元);故答案为:14万元,14.5万元;(3)20天的销售额的平均值为:(万元)所以,可以估计这种农副产品在该季度内平均每天的销售额为14.65万元.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24.(8分)如图,在中,,平分交于点,过点和点的圆,圆心在线段上,交于点,交于点.(1)判断与的位置关系,并说明理由;(2)若,,求的长.【答案】(1)与相切.证明见解析;(2)【解析】【分析】(1)利用角平分线的定义证明结合等腰三角形的性质证明从而证明结合可得答案;(2)连接,先利用勾股定理求解的长,再证明 利用相似三角形的性质列方程组求解即可得到答案.【详解】解:(1)与相切.理由如下:如图,连接,平分, 在上,是的切线.(2)连接 为的直径, ,, 解得: 所以:的长为: 【点睛】本题考查的切线的判定与性质,圆的基本性质,圆周角定理,三角形相似的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.25.(8分)设二次函数(b,c是常数)的图像与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数的表达式及其图像的对称轴.(2)若函数的表达式可以写成(h是常数)的形式,求的最小值.(3)设一次函数(m是常数).若函数的表达式还可以写成的形式,当函数的图像经过点时,求的值.【答案】(1),(2)(3)或【分析】(1)利用待定系数法计算即可.(2)根据等式的性质,构造以b+c为函数的二次函数,求函数最值即可.(3)先构造y的函数,把点代入解析式,转化为的一元二次方程,解方程变形即可.(1)由题意,二次函数(b,c是常数)经过(1,0),(2,0),∴,解得,∴抛物线的解析式.∴ 图像的对称轴是直线.(2)由题意,得,∵,∴b=-4h,c=∴,∴当时,的最小值是.(3)由题意,得因为函数y的图像经过点,所以,所以,或.【点睛】本题考查了二次函数的待定系数法,二次函数的最值,对称性,熟练掌握二次函数的最值,对称性是解题的关键.26.(10分)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°.求证:.【探究】如图②,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,当点F在AD延长线上,∠FEG=∠AEB=90°,且,连接BG交CD于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且,过E作EF交AD于点F,使∠EFA=∠AEB,延长FE交BC于点G,求证:BG=CG.【解析】(1)根据“两角对应相等的两个三角形相似”来证明;(2)过点G作GM⊥CD于点M,由相似三角形的判定与性质及全等三角形的判定进行证明;(3)仿照(2),在EG上取点M,使∠BME=∠AEB,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,再根据相似与全等的知识锁定答案.【答案】证明:(1)∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°.∴∠BEC=∠EAD.∴Rt△AED∽Rt△EBC.∴ .(2)如答图1,过点G作GM⊥CD于点M,由(1)可知.∵,,∴.∴BC=GM.又∵∠C=∠GMH=90°,∠CHB=∠MHG,∴△BCH≌△GMH.∴BH=GH.(3)如答图2,在EG上取点M,使∠BME=∠AEB,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG.∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM.∴△AEF∽△EBM.∴.∵∠AEB+∠DEC=180°,∠FEA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD.∵∠BMG+∠BME=180°,∴∠N=∠EFD.∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN.∴△DEF∽△ECN.∴.又∵,∴,∴BM=CN.又∵∠N=∠BMG,∠BGM=∠CGN,∴△BGM≌△CGN.∴BG=CG.
相关试卷
这是一份2023年中考考前押题密卷:数学(重庆卷)(全解全析),共24页。
这是一份2023年中考考前押题密卷:数学(江西卷)(全解全析),共18页。
这是一份2023年中考考前押题密卷:数学(天津卷)(全解全析),共27页。