中考数学三轮冲刺《圆》解答题冲刺练习04(含答案)
展开中考数学三轮冲刺《圆》解答题冲刺练习04
1.如图,AB是⊙O的直径,点E是弧AD上的一点,∠DBC=∠BED.
(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.
2.如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.
(1)求证:EF∥CG;
(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.
3.如图,Rt△ABC中,∠ABC=90°,以AB为直径⊙O交AC于点D,E是BC中点,连接DE、OE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)若tanC=,DE=2,求AD的长.
4.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
5.如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.
(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;
(2)在(1)的条件不变的情况下,若GC=CD,求∠C.
6.如图,已知AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.
7.如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.
(1)求证:AB是⊙O的切线;
(2)若CF=4,DF=,求⊙O的半径r及sinB.
8.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点E,与CD相交于点F,连接EF.
(1)求证:EF平分∠BFD.
(2)若tan∠FBC=,DF=,求EF的长.
0.中考数学三轮冲刺《圆》解答题冲刺练习04(含答案)参考答案
一 、解答题
1.解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠DBC=∠BED,∠BED=∠A,
∴∠DBC=∠A,
∵∠A+∠ABD=90°,
∴∠DBC+∠ABD=90°,
即∠ABC=90°,
∵OB⊙O是半径,
∴BC是⊙O的切线;
(2)∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,
∴BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
2.解:
3.解:
4.(1)证明:连接OM,如图1,
∵BM是∠ABC的平分线,
∴∠OBM=∠CBM,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠CBM=∠OMB,
∴OM∥BC,
∵AB=AC,AE是∠BAC的平分线,
∴AE⊥BC,
∴OM⊥AE,
∴AE为⊙O的切线;
(2)解:设⊙O的半径为r,
∵AB=AC=6,AE是∠BAC的平分线,
∴BE=CE=BC=2,
∵OM∥BE,
∴△AOM∽△ABE,
∴=,即=,解得r=,
即设⊙O的半径为;
(3)解:作OH⊥BE于H,如图,
∵OM⊥EM,ME⊥BE,
∴四边形OHEM为矩形,
∴HE=OM=,∴BH=BE﹣HE=2﹣=,
∵OH⊥BG,∴BH=HG=,
∴BG=2BH=1.
5.解:(1)结论:GD与⊙O相切.理由如下:连接AG.
∵点G、E在圆上,
∴AG=AE.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠B=∠1,∠2=∠3.
∵AB=AG,
∴∠B=∠3.
∴∠1=∠2.
在△AED和△AGD中,
,
∴△AED≌△AGD.
∴∠AED=∠AGD.
∵ED与⊙A相切,
∴∠AED=90°.
∴∠AGD=90°.
∴AG⊥DG.
∴GD与⊙A相切.
(2)∵GC=CD,四边形ABCD是平行四边形,
∴AB=DC,∠4=∠5,AB=AG.
∵AD∥BC,
∴∠4=∠6.
∴∠5=∠6=∠B.
∴∠2=2∠6.
∴∠6=30°.
∴∠C=180°﹣∠B=180°﹣60°=120°.
6.解:
(1)证明:∵∠BED=∠BAD,∠C=∠BED,∴∠BAD=∠C.
∵OC⊥AD于点F,
∴∠BAD+∠AOC=90°.
∴∠C+∠AOC=90°.
∴∠OAC=90°.
∴OA⊥AC.
∴AC是⊙O的切线.
(2)解:∵OC⊥AD于点F,
∴AF=AD=8.
在Rt△OAF中,OF==6,
∵∠AOF=∠AOC,∠OAF=∠C,
∴△OAF∽△OCA.∴.即OC=.
在Rt△OAC中,AC=.
7.证明:(1)连OA、OD,如图,
∵点D为CE下半圆弧中点,
∴OD⊥BC,
∴∠EOD=90°,
∵AB=BF,OA=OD,
∴∠BAF=∠BFA,∠OAD=∠D,
而∠BFA=∠OFD,
∴∠OAD+∠BAF=∠D+∠BFA=90°,
即∠OAB=90°,
∴OA⊥AB,
∴AB是⊙O切线;
(2)OF=CF﹣OC=4﹣r,OD=r,DF=,
在Rt△DOF中,OD2+OF2=DF2,
即r2+(4﹣r)2=()2,解得r1=3,r2=1(舍去);
∴半径r=3,
∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.
在Rt△AOB中,AB2+OA2=OB2,
∴AB2+32=(AB+1)2,
∴AB=4,OB=5,
∴sin∠B=.
8.解:(1)连接OE,BF,PF,
∵∠C=90°,
∴BF是⊙O的直径,
∵⊙O与AD相切于点E,
∴OE⊥AD,
∵四边形ABCD的正方形,
∴CD⊥AD,
∴OE∥CD,
∴∠EFD=∠OEF,
∵OE=OF,
∴∠OEF=∠OFE,
∴∠OFE=∠EFD,
∴EF平分∠BFD;
(2)连接PF,
∵BF是⊙O的直径,
∴∠BPF=90°,
∴四边形BCFP是矩形,
∴PF=BC,
∵tan∠FBC=,
设CF=3x,BC=4x,
∴3x+=4x,x=,
∴AD=BC=4,
∵点E是切点,
∴OE⊥AD
∴DF∥OE∥AB
∴DE:AE=OF:OB=1:1
∴DE=AD=2,
∴EF=5.
中考数学三轮冲刺《圆》解答题冲刺练习15(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习15(含答案),共10页。试卷主要包含了8,AC=12,求⊙O的直径.等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习10(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习10(含答案),共10页。试卷主要包含了解得等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习09(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习09(含答案),共9页。