中考数学三轮冲刺《圆》解答题冲刺练习13(含答案)
展开中考数学三轮冲刺《圆》解答题冲刺练习13
1.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.
(1)判断DE与⊙O的位置关系并说明理由;
(2)若AC=16,tanA=,求⊙O的半径.
2.已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.
3.如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是 弧DE的中点.
(1)求证:直线l是⊙O的切线;
(2)若PA=6,求PB的长
4.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.
(1)求证:EF是⊙O切线;
(2)若AB=15,EF=10,求AE的长.
5.如图,⊙O是△ABC 的外接圆,AB=AC,BD是⊙O的直径,PA∥BC,与DB的延长线交于点P,
连接AD.
(1)求证:PA是⊙O的切线;
(2)若AB=,BC=4,求AD的长.
6.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且∠DAE=∠FAE.
(1)求证:AD为⊙O切线;
(2)若sin∠BAC=,求tan∠AFO的值.
7.如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.
(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.
8.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E.过点D作DF⊥AB,垂足为F,连结DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.
0.中考数学三轮冲刺《圆》解答题冲刺练习13(含答案)参考答案
一 、解答题
1.解:(1)DE与⊙O相切.理由如下:连接DO,BD,如图,
∵∠BDE=∠A,∠A=∠ADO,
∴∠ADO=∠EDB,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ODB+∠EDB=90°,即∠ODE=90°,
∴OD⊥DE,
∴DE为⊙O的切线;
(2)∵∠BDE=∠A,
∴∠ABD=∠EBD,
而BD⊥AC,
∴△ABC为等腰三角形,
∴AD=CD=0.5AC=8,
在Rt△ABD中,∵tanA=BD:AD=
∴BD=6,
∴AB=10,
∴⊙O的半径为5.
2.证明:连接OD.
∵DE是⊙O的切线,
∴OD⊥DE,
∴∠ODE=90°,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠CAD=∠DAB,
∴∠CAB=∠ADO,
∴OD∥AE,
∴∠E+∠ODE=180°,
∴∠E=90°,
∴DE⊥AE.
3.(1)证明: 连接DE,OA.
∵PD是直径, ∴∠DEP=90°,
∵PB⊥FB, ∴∠DEP=∠FBP, ∴DE∥BF,
∵ , ∴OA⊥DE, ∴OA⊥BF,
∴直线l是⊙O的切线.
(2)作OH⊥PA于H.
∵OA=OP,OH⊥PA, ∴AH=PH=3,
∵OA∥PB, ∴∠OAH=∠APB,
∵∠AHO=∠ABP=90°, ∴△AOH∽△PAB,
4.证明:(1)连接OE,
∵∠B的平分线BE交AC于D,
∴∠CBE=∠ABE.
∵EF∥AC,
∴∠CAE=∠FEA.
∵∠OBE=∠OEB,∠CBE=∠CAE,
∴∠FEA=∠OEB.
∵∠AEB=90°,
∴∠FEO=90°.
∴EF是⊙O切线.
(2)∵AF•FB=EF•EF,
∴AF×(AF+15)=10×10.
∴AF=5.
∴FB=20.
∵∠F=∠F,∠FEA=∠FBE,
∴△FEA∽△FBE.
∴EF=10
∵AE2+BE2=15×15.
∴AE=3.
5.解:
(1)证明:连接OA交BC于点E,由AB=AC可得OA⊥BC,
∵PA∥BC,
∴∠PAO=∠BEO=90°.
∵OA为⊙O的半径,
∴PA为⊙O的切线.
(2)根据(1)可得CE=BC=2.
Rt△ACE中,,∴tanC=.
∵BD是直径,∴∠BAD=90°,
又∵∠D=∠C,
∴tanD==,∴AD=.
6.证明:(1)∵BE平分∠ABC,
∴∠1=∠2,
∵∠1=∠3,∠3=∠4,
∴∠4=∠2,
∵AB为直径,
∴∠AEB=90°,
∵∠2+∠BAE=90°
∴∠4+∠BAE=90°,即∠BAD=90°,
∴AD⊥AB,
∴AD为⊙O切线;
(2)解:∵AB为直径,
∴∠ACB=90°,
在Rt△ABC中,∵sin∠BAC=,
∴设BC=3k,AC=4k,则AB=5k.
连接OE交OE于点G,如图,
∵∠1=∠2,
∴=,
∴OE⊥AC,
∴OE∥BC,AG=CG=2k,
∴OG=BC=k,
∴EG=OE﹣OG=k,
∵EG∥CB,
∴△EFG∽△BFC,
∴===,
∴FG=CG=k,
在Rt△OGF中,tan∠GFO=3,即tan∠AFO=3.
7.解:(1)如图,连接OC,
∵PD⊥AB,
∴∠ADE=90°,
∵∠ECP=∠AED,
又∵∠EAD=∠ACO,
∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,
∴PC⊥OC,
∴PC是⊙O切线.
(2)延长PO交圆于G点,
∵PF×PG=PC2,PC=3,PF=1,
∴PG=9,
∴FG=9﹣1=8,
∴AB=FG=8.
8.解:(1)证明:如图,连结OD.
∵AB=AC,
∴∠B=∠C.
∵OD=OC,
∴∠ODC=∠C,
∴∠ODC=∠B,
∴OD∥AB.
∵DF⊥AB,
∴OD⊥DF.
∵点D在⊙O上,
∴直线DF与⊙O相切;
(2)∵四边形ACDE是⊙O的内接四边形,
∴∠AED+∠ACD=180°.
∵∠AED+∠BED=180°,
∴∠BED=∠ACD.
又∵∠B=∠B,
∴△BED∽△BCA.
∴=.
∵OD∥AB,AO=CO,
∴BD=CD=BC=3,
又∵AE=7,
∴=,解得BE=2.
∴AC=AB=AE+BE=7+2=9.
中考数学三轮冲刺《圆》解答题冲刺练习15(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习15(含答案),共10页。试卷主要包含了8,AC=12,求⊙O的直径.等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习14(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习14(含答案),共9页。
中考数学三轮冲刺《圆》解答题冲刺练习11(含答案): 这是一份中考数学三轮冲刺《圆》解答题冲刺练习11(含答案),共8页。试卷主要包含了解得m<2;等内容,欢迎下载使用。