![中考数学专题特训第十二讲:一次函数(含详细参考答案)第1页](http://img-preview.51jiaoxi.com/2/3/14278048/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学专题特训第十二讲:一次函数(含详细参考答案)第2页](http://img-preview.51jiaoxi.com/2/3/14278048/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学专题特训第十二讲:一次函数(含详细参考答案)第3页](http://img-preview.51jiaoxi.com/2/3/14278048/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:各省数学中考真题
中考数学专题特训第十二讲:一次函数(含详细参考答案)
展开
这是一份中考数学专题特训第十二讲:一次函数(含详细参考答案),共23页。
2013年中考数学专题复习第十二讲:一次函数
【基础知识回顾】
一、 一次函数的定义:
一般的:如果y= ( )即y叫x的一次函数
特别的:当b= 时,一次函数就变为y-kx(k≠0),这时y叫x的
【赵老师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】
二、一次函数的同象及性质:
1、一次函数y=kx+b的同象是经过点(0,b)(-,0)的一条
正比例函数y= kx的同象是经过点 和 的一条直线
【赵老师提醒:同为一次函数的同象是一条直线,所以函数同象是需返取
个特殊的点过这两个点画一条直线即可】
2、正比例函数y= kx(k≠0)当k>0时,其同象过 、 象限,时y随x的增大而
)当k0 b>0过 象限
k>0 b0或kx+ b
18.(2012•南京)已知一次函数y=kx+k-3的图象经过点(2,3),则k的值为 .
18.2
19.(2012•江西)已知一次函数y=kx+b(k≠0)经过(2,-1)、(-3,4)两点,则它的图象不经过第 象限.
19.三
20.(2012•湖州)一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为x= .
20.-1
22.(2012•南平)将直线y=2x向上平移1个单位长度后得到的直线是 .
考点: 一次函数图象与几何变换。810360
分析: 先判断出直线经过坐标原点,然后根据向上平移,横坐标不变,纵坐标加求出平移后与坐标原点对应的点,然后利用待定系数法求一次函数解析式解答.
解答: 解:直线y=2x经过点(0,0),
向上平移1个单位后对应点的坐标为(0,1),
∵平移前后直线解析式的k值不变,
∴设平移后的直线为y=2x+b,
则2×0+b=1,
解得b=1,
∴所得到的直线是y=2x+1.
故答案为:y=2x+1.
点评: 本题考查了一次函数图象与几何变换,利用点的变化解答图形的变化是常用的方法,一定要熟练掌握并灵活运用.
23.(2012•南通)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于 .
考点: 一次函数图象上点的坐标特征。810360
专题: 探究型。
分析: 先令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a不论为何值此点均在直线l上,设此直线的解析式为y=kx+b(k≠0),把两点代入即可得出其解析式,再把Q(m,n)代入即可得出2m﹣n的值,进而可得出结论.
解答: 解:∵令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a不论为何值此点均在直线l上,
∴设此直线的解析式为y=kx+b(k≠0),
∴,解得,
∴此直线的解析式为:y=2x﹣1,,
∵Q(m,n)是直线l上的点,
∴2m﹣1=n,即2m﹣n=1,
∴原式=(1+3)2=16.
故答案为:16.
点评: 本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式.
24.(2012•黄冈)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货物相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:
①快递车从甲地到乙地的速度为100千米/时;
②甲、乙两地之间的距离为120千米;
③图中点B的坐标为(3,75);
④快递车从乙地返回时的速度为90千米/时,
以上4个结论正确的是 .
考点: 一次函数的应用。810360
分析: 根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.
解答: 解:①设快递车从甲地到乙地的速度为x千米/时,则
3(x﹣60)=120,
x=100.
故①正确;
②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,
故②错误;
③因为快递车到达乙地后缷完物品再另装货物共用45分钟,
所以图中点B的横坐标为3+=3,
纵坐标为120﹣60×=75,
故③正确;
④设快递车从乙地返回时的速度为y千米/时,则
(y+60)(4﹣3)=75,
y=90,
故④正确.
故答案为;①③④.
点评: 本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.
25.(2012•包头)如图,在平面直角坐标系中,点A在x轴上,△ABO是直角三角形,∠ABO=90°,点B的坐标为(﹣1,2),将△ABO绕原点O顺时针旋转90°得到△A1B1O,则过A1,B两点的直线解析式为 .
考点: 待定系数法求一次函数解析式;坐标与图形变化-旋转;相似三角形的判定与性质。810360
分析: 过点B作BC⊥x轴于点C,根据相似三角形对应边成比例求出AC的长度,然后求出OA的长度,从而得到点A的坐标,再根据旋转变换的性质求出点A1的坐标,然后利用待定系数法求一次函数解析式解答即可.
解答: 解:如图,过点B作BC⊥x轴于点C,
∵点B的坐标为(﹣1,2),
∴OC=1,BC=2,
∵∠ABO=90°,
∴∠BAC+∠AOB=90°,
又∵∠BAC+∠ABC=90°,
∴∠AOB=∠ABC,
∴Rt△ABC∽Rt△BOC,
∴=,
即=,
解得AC=4,
∴OA=OC+AC=1+4=5,
∴点A(﹣5,0),
根据旋转变换的性质,点A1(0,5),
设过A1,B两点的直线解析式为y=kx+b,
则,
解得.
所以过A1,B两点的直线解析式为y=3x+5.
故答案为:y=3x+5.
点评: 本题考查了待定系数法求一次函数解析式,旋转变换的性质,作辅助线构造出相似三角形,利用相似三角形对应边成比例求出AC的长度,然后得到点A的坐标是解题的关键.
三、解答题
26.(2012•武汉)在平面直角坐标系中,直线y=kx+3经过点(-1,1),求不等式kx+3<0的解集.
26.解:如图,∵将(-1,1)代入y=kx+3得1=-k+3,
∴k=2,
即y=2x+3,
当y=0时,x=-,
即与x轴的交点坐标是(-,0),
由图象可知:不等式kx+3<0的解集是x<-.
27.(2012•岳阳)游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水--清洗--灌水”中水量y(m3)与时间t(min)之间的函数关系式.
(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;
(2)问:排水、清洗、灌水各花多少时间?
27.解:(1)排水阶段:设解析式为:y=kt+b,
图象经过(0,1500),(25,1000),则:
,
解得:,
故排水阶段解析式为:y=-20t+1500;
清洗阶段:y=0,
灌水阶段:设解析式为:y=at+c,
图象经过(195,1000),(95,0),则:
,
解得: ,
灌水阶段解析式为:y=10t-950;
(2)∵排水阶段解析式为:y=-20t+1500;
∴y=0时,0=-20t+1500,
解得:t=75,
则排水时间为75分钟,
清洗时间为:95-75=20(分钟),
∵根据图象可以得出游泳池蓄水量为1500(m3),
∴1500=10t-950,
解得:t=245,
故灌水所用时间为:245-95=150(分钟).
28.解:(1)根据2012年5月份,该市居民甲用电100千瓦时,交电费60元;
得出:a=60÷100=0.6,
居民乙用电200千瓦时,交电费122.5元.
则(122.5-0.6×150)÷(200-150)=0.65,
故:a=0.6;b=0.65.
(2)当x≤150时,y=0.6x.
当150<x≤300时,y=0.65(x-150)+0.6×150=0.65x-7.5,
当x>300时,y=0.9(x-300)+0.6×150+0.65×150=0.9x-82.5;
(3)当居民月用电量x≤150时,
0.6x≤0.62x,故x≥0,
当居民月用电量x满足150<x≤300时,
0.65x-75≤0.62x,
解得:x≤250,
当居民月用电量x满足x>300时,
0.9x-82.5≤0.62x,
解得:x≤,
综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过250千瓦时时,其月平均电价每千瓦时不超过0.62元.
30.(2012•新疆)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为yA元,yB元.
(1)请填写下表,并求出yA,yB与x之间的函数关系式;
C
D
总计
A
x吨
200吨
B
300吨
总计
240吨
260吨
500吨
(2)当x为何值时,A村的运费较少?
(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.
考点: 一次函数的应用。810360
专题: 应用题。
分析: (1)由A村共有香梨200吨,从A村运往C仓库x吨,剩下的运往D仓库,故运往D仓库为(200﹣x)吨,由A村已经运往C仓库x吨,C仓库可储存240吨,故B村应往C仓库运(240﹣x)吨,剩下的运往D仓库,剩下的为300﹣(240﹣x),化简后即可得到B村运往D仓库的吨数,填表即可,由从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元,由表格中的代数式,即可分别列出yA,yB与x之间的函数关系式;
(2)由第一问表示出的yA与x之间的函数关系式得到此函数为一次函数,根据x的系数为负数,得到此一次函数为减函数,且0≤x≤200,故x取最大200时,yA有最小值,即为A村的运费较少时x的值;
(3)设两村的运费之和为W,W=yA+yB,把第一问表示出的两函数解析式代入,合并后得到W为关于x的一次函数,且x的系数大于0,可得出此一次函数为增函数,可得出x=0时,W有最小值,将x=0代入W关于x的函数关系式中,即可求出W的最小值.
解答: 解:(1)填写如下:
C D 总计
A x吨 (200﹣x)吨 200吨
B (240﹣x)吨 (60+x)吨 300吨
总计 240吨 260吨 500吨
由题意得:yA=40x+45(200﹣x)=﹣5x+9000;yB=25(240﹣x)+32(60+x)=7x+7920;
(2)对于yA=﹣5x+9000(0≤x≤200),
∵k=﹣5<0,
∴此一次函数为减函数,
则当x=200吨时,yA最小,其最小值为﹣5×200+9000=8000(元);
(3)设两村的运费之和为W(0≤x≤200),
则W=yA+yB=﹣5x+9000+7x+7920=2x+16920,
∵k=2>0,
∴此一次函数为增函数,
则当x=0时,W有最小值,W最小值为16920元.
点评: 此题考查了一次函数的应用,涉及的知识有:一次函数的性质,以及函数关系式的列法,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.本题注意x的范围为0≤x≤200.
31.(2012•绥化)星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.
(1)8:00~8:30,燃气公司向储气罐注入了 米3的天然气;
(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;
(3)正在排队等候的20辆车加完气后,储气罐内还有天然气 米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.
考点: 一次函数的应用。810360
分析: (1)根据函数图象可知,8点时储气罐中有2000米3的天然气,8:30时储气罐中有10000米3的天然气,即可得出燃气公司向储气罐注入了8000米3的天然气;
(2)根据图象上点的坐标得出函数解析式即可;
(3)根据每车20米3的加气量,则可求出20辆车加完气后的储气量,进而得出所用时间.
解答: 解:(1)根据图象可得出:燃气公司向储气罐注入了10000﹣2000=8000(米3)的天然气;
故答案为:8000;
(2)当x≥8.5时由图象可设y与x的函数关系式为y=kx+b,由已知得:
,
解得,
故当x≥8.5时,储气罐中的储气量y(米3)与时间x(小时)的函数关系式为:y=﹣1000x+18500,
(3)根据每车20米3的加气量,则20辆车加完气后,储气罐内还有天然气:
10000﹣20×20=9600(米3),
故答案为:9600,
根据题意得出:
9600=﹣1000x+18500,
x=8.9<9,
答:这第20辆车在当天9:00之前能加完气.
点评: 此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,利用图象获取正确信息是解题关键.
相关试卷
这是一份中考数学专题特训第三讲:整式(含详细参考答案),共22页。
这是一份中考数学专题特训第三讲:整式(含详细参考答案),共22页。
这是一份中考数学专题特训第一讲:实数(含详细参考答案),共10页。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)