终身会员
搜索
    上传资料 赚现金
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册
    立即下载
    加入资料篮
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册01
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册02
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册03
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册04
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册05
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册06
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册07
    新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册08
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中5.3 导数在研究函数中的应用教课内容ppt课件

    展开
    这是一份高中5.3 导数在研究函数中的应用教课内容ppt课件,共46页。PPT课件主要包含了素养目标·定方向,必备知识·探新知,极值点或,区间端点,最大的一个,最小的一个,关键能力·攻重难,课堂检测·固双基等内容,欢迎下载使用。

    5.3 导数在研究函数中的应用
    5.3.2 函数的极值与最大(小)值
    第2课时 函数的最大(小)值
    1.基于极值概念的再认识结合函数极值的定义,我们有如下结论:一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值,并且函数的最值必在___________ ________处取得.
    函数的最大值与最小值的再认识
    想一想:上述结论还有怎样的内涵?提示:(1)给定函数的区间必须是闭区间,f(x)在开区间上虽然连续但不能保证有最大值和最小值.常见的有以下几种情况:如图(1)中的函数y=f(x)在(a,b)上有最大值而无最小值;如图(2)中的函数y=f(x)在(a,b)上有最小值而无最大值;如图(3)中的函数y=f(x)在(a,b)上既无最大值又无最小值;如图(4)中的函数y=f(x)在(a,b)上既有最大值又有最小值.
    练一练:如图所示,函数f(x)导函数的图象是一条直线,则(  )A.函数f(x)没有最大值也没有最小值B.函数f(x)有最大值,没有最小值C.函数f(x)没有最大值,有最小值D.函数f(x)有最大值也有最小值[解析] 由函数图象可知,函数只有一个极小值点x=1,且函数在此处取得最小值,没有最大值.
    2.求函数y=f(x)在闭区间[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在区间(a,b)上的_______;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中_____________是最大值,_____________是最小值.
    想一想:函数的极值与最值有怎样的区别与联系?提示:(1)极值是对某一点附近(局部)而言,最值是对函数的整个定义区间[a,b]而言.(2)在函数的定义区间[a,b]内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个.(3)函数f(x)的极值点不能是区间的端点,而最值点可以是区间的端点.(4)对于在闭区间上图象连续不断的函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.
    练一练:已知函数f(x)=x3-3x-1,若在区间[-3,2]上,f(x)的最大值为M,最小值为N,则M-N=(  )A.20  B.18  C.3  D.0[解析] 由f(x)=x3-3x-1得f ′(x)=3x2-3,令f ′(x)=0,解得x=±1,所以x=1,x=-1为函数f(x)的极值点.因为f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,所以在区间[-3,2]上,M=f(x)max=1,N=f(x)min=-19,故M-N=20.
    [规律方法] 求函数最值的四个步骤:第一步求函数的定义域;第二步求f ′(x),解方程f ′(x)=0;第三步列出关于x,f(x),f ′(x)的变化表;第四步求极值、端点值,确定最值.特别警示:不要忽视将所求极值与区间端点的函数值比较.
    【对点训练】❶(1)函数f(x)=x3-3x2-9x+6在区间[-4,4]上的最大值为(  )A.11    B.-70C.-14    D.21(2)(2022·白山高二检测)函数y=xln x的最小值为(  )A.-e-1  B.-e
    [解析] (1)函数f(x)=x3-3x2-9x+6的导数为f ′(x)=3x2-6x-9,令f ′(x)=0得x=-1或x=3,由f(-4)=-70;f(-1)=11;f(3)=-21;f(4)=-14;所以函数y=x3-3x2-9x+6在区间[-4,4]上的最大值为11.
    设函数f(x)=x3+ax2-a2x+m(a>0).(1)求函数f(x)的单调区间;(2)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;(3)若对任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.[分析] (1)求f(x)的单调区间,可解不等式f′(x)≥0,f′(x)≤0,由于f(x)表达式中含参数,故需注意是否需要分类讨论;(2)f(x)在x∈[-1,1]内没有极值点的含义是f′(x)=0在[-1,1]内没有实数根,故f(x)在[-1,1]内单调;(3)f(x)≤1在[-2,2]内恒成立,则f(x)在[-2,2]内的最大值小于等于1.
    而f(2)-f(-2)=16-4a2<0,f(x)max=f(-2)=-8+4a+2a2+m,又∵f(x)≤1在[-2,2]上恒成立,∴-8+4a+2a2+m≤1,即m≤9-4a-2a2,在a∈[3,6]上恒成立,∵9-4a-2a2的最小值为-87,∴m≤-87.
    [规律方法] 1.由于参数的取值范围不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化,故含参数时,需注意是否分类讨论.2.已知函数最值求参数,可先求出函数在给定区间上的极值及函数在区间端点处的函数值,通过比较它们的大小,判断出哪个是最大值,哪个是最小值,结合已知求出参数,进而使问题得以解决.
    【对点训练】❷已知函数g(x)=ex-2ax-b,求g(x)在[0,1]上的最小值.
    设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).(1)求函数f(x)的最小值h(t);(2)在(1)的条件下,若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.[分析] 第(1)小题可通过配方法求f(x)的最小值;第(2)小题由h(t)<-2t+m,得h(t)+2t[解析] (1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)的最小值为f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t)=-t3+3t-1,由g′(t)=-3t2+3=0及t>0,得t=1,当t变化时,g′(t),g(t)的变化情况如下表:
    由上表可知当t=1时,g(t)有极大值g(1)=1,又在定义域(0,2)内,g(t)有唯一的极值点,∴函数g(t)的极大值也就是g(t)在定义域(0,2)内的最大值g(t)max=1.h(t)<-2t+m在(0,2)内恒成立,即g(t)1时上式成立,∴实数m的取值范围是(1,+∞).
    [规律方法] 将证明或求解不等式问题转化为研究一个函数的最值问题可以使问题解决变得容易.一般地,若不等式a≥f(x)恒成立,a的取值范围是a≥[f(x)]max;若不等式a≤f(x)恒成立,则a的取值范围是a≤[f(x)]min.
    【对点训练】❸已知函数 f(x)=(x-1)3+m.(1)若f(1)=1,求函数f(x)的单调区间;(2)若关于x的不等式f(x)≥x3-1在区间[1,2]上恒成立,求m的取值范围.[解析] (1)因为f(1)=1,所以m=1,则f(x)=(x-1)3+1=x3-3x2+3x,而f ′(x)=3x2-6x+3=3(x-1)2≥0恒成立,所以函数f(x)的单调递增区间为(-∞,+∞).
    [误区警示] (1)正确;(2)中错误地认为直线l与曲线C相切,则C上所有点都在直线l的同侧,从而导致解答错误.错因是受直线与二次曲线相切的迁移影响,没有准确地理解导数的几何意义所致.
    [点评] 由直线与曲线相切的定义知,直线l与曲线C相切于某点P是一个局部定义,当l与C切于点P时,不能保证l与C无其他公共点,有可能还有其他切点,也有可能还有其他交点.
    1.函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是(  )A.5,15  B.5,-4C.5,-16  D.5,-15[解析] 由y=2x3-3x2-12x+5得y′=6x2-6x-12,令y′=0得x=-1(舍去)或x=2.故函数y=f(x)=2x3-3x2-12x+5在[0,3]上的最值可能是x取0,2,3时的函数值,而f(0)=5,f(2)=-15,f(3)=-4,故最大值为5,最小值为-15.
    2.函数f(x)=eln x-x在(0,2e]上的最大值为(  )A.1-e  B.-1C.-e  D.0
    3.已知函数f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为(  )A.-37  B.-29C.-5  D.-11[解析] 因为f ′(x)=6x2-12x=6x(x-2),由f ′(x)=0得x=0或2.又f(0)=m,f(2)=-8+m,f(-2)=-40+m,显然f(0)>f(2)>f(-2),所以m=3,最小值为f(-2)=-37.
    4.若函数f(x)=-x4+2x2+3,则f(x)(  )A.最大值为4,最小值为-4B.最大值为4,无最小值C.最小值为-4,无最大值D.既无最大值,也无最小值[解析] f′(x)=-4x3+4x,由f′(x)=0得x=±1或x=0.易知f(-1)=f(1)=4为极大值也是最大值,故应选B.
    相关课件

    高中数学人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用5.3 导数在研究函数中的应用说课课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第二册第五章 一元函数的导数及其应用5.3 导数在研究函数中的应用说课课件ppt,共23页。

    高中数学5.3 导数在研究函数中的应用授课课件ppt: 这是一份高中数学5.3 导数在研究函数中的应用授课课件ppt,共26页。PPT课件主要包含了新知初探·课前预习,题型探究·课堂解透,连续不断,最大值,最小值,答案A,答案D等内容,欢迎下载使用。

    数学选择性必修 第二册5.3 导数在研究函数中的应用课文内容ppt课件: 这是一份数学选择性必修 第二册5.3 导数在研究函数中的应用课文内容ppt课件,共51页。PPT课件主要包含了自学导引,fx3,最大值和最小值,区间端点处,课堂互动,素养训练等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材2023年高中数学第五章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map