中考数学三轮冲刺《函数实际问题》解答题冲刺练习14(含答案)
展开中考数学三轮冲刺《函数实际问题》
解答题冲刺练习14
1.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
2.如图,矩形ABCD的长AD=4 cm,宽AB=3 cm,长和宽都增加x cm,那么面积增加y cm2.
(1)写出y与x的函数关系式,并写出自变量x的取值范围;
(2)当增加2 cm时,面积增加多少?
3.某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.
(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
(2)假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?
4.某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.
(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?
(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?
5.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:
目的地 车型 | A村(元/辆) | B村(元/辆) |
大货车 | 800 | 900 |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
6. “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
根据以上信息,解答下列问题:
(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数解析式;
(2)请你帮助小明计算并选择哪个出游方案合算.
7.某镇组织20辆汽车装运完A,B,C三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题.
脐橙品种 | A | B | C |
每辆汽车运载量/吨 | 6 | 5 | 4 |
每吨脐橙获得/百元 | 12 | 16 | 10 |
(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案.
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
8.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围 .
9.某公司销售A,B两种产品,根据市场调研,确定两条信息:
信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:
信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.
根据以上信息,解答下列问题;
(1)求二次函数解析式;
(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.
10.在社会主义新农村建设中,衢州某乡镇决定对A,B两村之间的公路进行改造,并由甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.下图是甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
(1)乙工程队每天修公路多少米?
(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
(3)若该工程由甲、乙两工程队一直合作施工,需几天完成?
0.中考数学三轮冲刺《函数实际问题》解答题冲刺练习14(含答案)答案解析
一 、解答题
1.解:(1)y甲=y乙=16x+3
(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得0<x<;
令y甲=y乙,即22x=16x+3,解得x=;
令y甲>y乙,即22x>16x+3,解得<x≤1.
②当x>1时,令y甲<y乙,即15x+7<16x+3,解得x>4;令y甲=y乙,
即15x+7=16x+3,解得x=4;
令y甲>y乙,即15x+7>16x+3,解得1<x<4.综上可知:
当<x<4时,选乙快递公司省钱;
当x=4或x=时,选甲、乙两家快递公司快递费一样多;
2.解:(1)y=(3+x)(4+x)-12=x2+7x,x>0.
(2)当x=2时,y的值是18.
即当增加2 cm时,面积增加18 cm2.
3.解:(1)由题意得:y=500﹣10x.
(2)w=(50﹣40+x)=5000+400x﹣10x2=﹣10(x﹣20)2+9000
当x=20时,w有最大值,50+20=70,
即当销售单价定为70元时,每月销售这种篮球的利润最大,最大利润为9000元.
4.解:(1)设A种商品销售x 件,
则B种商品销售(100-x)件.
依题意,得 10x+15(100-x)=1350
解得x=30.∴100-x=70.
答:A种商品销售30件,B种商品销售70件.
(2)设A种商品购进a件,则B种商品购进(200-a)件.
依题意,得0≤200-a≤3a
解得 50≤a≤200
设所获利润为w元,则有
w=10a+15(200-a)=-5a+3000
∵-5<0,
∴w随a的增大而减小.
∴当a=50时,所获利润最大
W最大=-5×50+3000=2750元.
200-a=150.
答:应购进A种商品50件,B种商品150件,
可获得最大利润为2750元.
5.解:(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.
∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,
又∵3≤x≤8,
∴5≤x≤8且为整数,
∵y=100x+9400,
k=100>0,y随x的增大而增大,
∴当x=5时,y最小,
最小值为y=100×5+9400=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
6.解:(1)设y1=k1x+80,
把点(1,95)代入,可得95=k1+80,解得k1=15,
∴y1=15x+80(x≥0).
设y2=k2x,把(1,30)代入,可得k2=30,
∴y2=30x(x≥0).
(2)当y1=y2时,15x+80=30x,解得x=;
当y1>y2时,15x+80>30x,解得x<;
当y1<y2时,15x+80<30x,解得x>.
∴当租车时间为小时,选择甲、乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
7.解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,
那么装运C种脐橙的车辆数为(20﹣x﹣y),
则有6x+5y+4(20﹣x﹣y)=100,
整理得y=﹣2x+20.(0≤x≤10,且x为整数)
(2)由(1)知,装运A,B,C三种脐橙的车辆数分别为x,﹣2x+20,x,
由题意得﹣2x+20≥4,解得x≤8.
又∵x≥4,
∴4≤x≤8.
因为x为整数,所以x的值为4,5,6,7,8,
所以安排方案共有5种.
方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;
方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车;
方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车;
方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车;
方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车.
(3)设利润为W百元,则
W=6x×12+5(﹣2x+20)×16+4x×10=﹣48x+1 600(4≤x≤8),因为﹣48<0,
所以W的值随x的增大而减小.
W最大=﹣48×4+1 600=1 408(百元)=14.08(万元).
8.解:(1)由题意得点E(1,1.4), B(6,0.9), 代入y=ax2+bx+0.9得
∴所求的抛物线的解析式是y=-0.1x2+0.6x+0.9.
(2)把x=3代入y=-0.1x2+0.6x+0.9得y=-0.1×32+0.6×3+0.9=1.8
∴小华的身高是1.8米
(3)1<t<5 .
9.解:(1)根据题意,设销售A种产品所获利润y与销售产品x之间的函数关系式为y=ax2+bx,
将(1,1.4)、(3,3.6)代入解析式,
得:a+b=1.4,9a+3b=3.6,
解得:a=-0.1,b=1.5,
∴销售A种产品所获利润y与销售产品x之间的函数关系式为y=﹣0.1x2+1.5x;
(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,
∵﹣0.1<0,
∴当m=6时,W取得最大值,最大值为6.6万元,
答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.
10.解:(1)∵720÷(9-3)=120,
∴乙工程队每天修公路120米.
(2)设y乙=kx+b,
则∴
∴y乙=120x-360.
当x=6时,y乙=360,
设y甲=kx,
则360=6k,k=60,
∴y甲=60x.
(3)当x=15时,y甲=900,
∴该公路总长为:720+900=1 620(米).
设需m天完成,由题意得,(120+60)m=1 620,
解得m=9.
答:需9天完成.
中考数学三轮冲刺《函数实际问题》解答题冲刺练习10(含答案): 这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习10(含答案),共7页。试卷主要包含了8 m,6m,宽2,01m3),2,等内容,欢迎下载使用。
中考数学三轮冲刺《函数实际问题》解答题冲刺练习09(含答案): 这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习09(含答案),共8页。试卷主要包含了5吨,5=10000,等内容,欢迎下载使用。
中考数学三轮冲刺《函数实际问题》解答题冲刺练习07(含答案): 这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习07(含答案),共7页。