所属成套资源:中考数学三轮冲刺《四边形》解答题冲刺练习 (含答案)
中考数学三轮冲刺《四边形》解答题冲刺练习10(含答案)
展开
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习10(含答案),共8页。
中考数学三轮冲刺《四边形》解答题冲刺练习101.如图,在△ABC 中,AB=AC,D是BA延长线上的一点,点E是AC的中点 .(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母 ( 保留作图痕迹,不写作法 ).① 作∠DAC的平分线 AM ; ② 连接 BE并延长交 AM于点 F ; ③ 连接 FC.(2) 猜想与证明:猜想四边形 ABCF 的形状,并说明理由 . 2.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF. 3.把矩形纸片ABCD(如图①)沿对角线DB剪开,得到两个三角形,将其中的△DCB沿对角线平移到△EC′F的位置(如图②).求证:△ADE≌△C′FB. 4.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形. 5.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形. 6.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形. 7.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF. 8.如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连结DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形. 9.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长. 10.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.
0.中考数学三轮冲刺《四边形》解答题冲刺练习10(含答案)答案解析 一 、解答题1.解:( 1 )如图所示: (2)四边形 ABCF 是平行四边形.理由如下: ∵ AB=AC, ∴∠ABC=∠ACB.∴∠DAC=∠ABC +∠ACB=2∠ACB.由作图可知∠DAC=2∠FAC, ∴∠ACB=∠FAC.∴ AF∥BC.∵ 点 E 是 AC 的中点, ∴ AE=CE.在△AEF 和△CEB 中 ,∠FAE=∠ECB, AE=CE,∠AEF=∠CEB, ∴△AEF ≌△CEB ( ASA ), ∴ AF=BC.又 ∵ AF∥BC, ∴ 四边形 ABCF 是平行四边形. 2.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,∠ADE=∠CBF,AD=BC,∠A=∠C,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF. 3.证明:∵四边形ABCD是矩形,△EC′F由△DCB平移得到,∴AD=CB=C′F,DE=BF,C′F∥AD∥BC,∴∠D=∠F,∴△ADE≌△C′FB. 4.证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形. 5.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形. 6.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形. 7.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=CF;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF. 8.解:(1)∵△AEB是等边三角形,EF⊥AB,∴∠AEF=∠AEB=30°=∠BAC,AE=AB,∠EFA=90°.又∵∠ACB=90°,∴∠EFA=∠ACB.∴△AEF≌△BAC(AAS),∴AC=EF;(2)证明:∵△ACD是等边三角形,∴AC=AD,∠DAC=60°.由(1)的结论得AC=EF,∴AD=EF.又∵∠BAC=30°,∴∠FAD=∠BAC+∠DAC=90°.又∵∠EFA=90°,∴EF∥AD,又∵EF=AD,∴四边形ADFE是平行四边形 9.证明:(1)证明:∵△ABC绕A点旋转得到△ADE,∴AB=AD,AC=AE,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,∴∠EAC=∠DAB.又AB=AC,∴AE=AD,∴△AEC≌△ADB.(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,又由旋转知AB=AD,∴∠DBA=∠BDA=45°,∴△BAD是等腰直角三角形.∴BD2=AB2+AD2=22+22=8,∴BD=2.∵四边形ADFC是菱形,∴AD=DF=FC=AC=AB=2,∴BF=BD-DF=2-2. 10.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.
相关试卷
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案),共8页。试卷主要包含了求线段BF的长,AE=1,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案),共7页。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案),共7页。