所属成套资源:中考数学三轮冲刺《四边形》解答题冲刺练习 (含答案)
中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案)
展开
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案),共9页。试卷主要包含了5BC,等内容,欢迎下载使用。
中考数学三轮冲刺《四边形》解答题冲刺练习111.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE. 2.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC.猜想线段CD与线段AE的位置关系和大小关系,并加以证明. 3.如图,在矩形ABCD中,对角线AC、BD相交于点O.(1)画出△AOB平移后的三角形,其平移的方向为射线AD的方向,平移的距离为线段AD的长;(2)观察平移后的图形,除了矩形ABCD外还有哪一种特殊的平行四边形?并给出证明. 4.如图,在四边形ABCD中,AD∥BC,E是BC的中点,AC平分∠BCD,且AC⊥AB,接DE,交AC于F.(1)求证:AD=CE;(2)若∠B=60°,试确定四边形ABED是什么特殊四边形?请说明理由. 5.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号) 6.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形. 7.如图,矩形ABCD的对角线AC,BD交于点O,以OC,OD为邻边作平行四边形OCED,连接OE.(1)求证:四边形OBCE是平行四边形;(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长. 8.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长. 9.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连接AF,求∠BAF的大小. 10.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=58°,则∠DPE=________°.
0.中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案)答案解析 一 、解答题1.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE. 2.解:线段CD与线段AE的位置关系和大小关系是平行且相等.证明:∵CE∥AB,∴∠ADO=∠CEO,∠DAO=∠ECO.又∵OA=OC,∴△ADO≌△CEO,∴AD=CE,∴四边形ADCE是平行四边形,∴CD∥AE,CD=AE. 3.解:(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形. 4.证明:(1)连接,∵AC平分∠BCD,∴∠BCA=∠DCA,∵AD∥BC,∴∠DCA=∠DAC,∴AD=CD,∵AB⊥AC,E是BC的中点,∴AE=CE=BE=0.5BC,∴DE⊥AC,AF=CF,∴∠AFD=∠CFE=90°,∴△AFD≌△CFE,∴AD=CE,(2)当∠B=60°,时,四边形ABED是菱形,∵AB⊥AC,DE⊥AC,∴AB∥DE,∴四边形AECF是平行四边形,∵AE=BE,∠B=60°,∴△ABE是等边三角形,∴AB=BE∴平行四边形AECF是菱形. 5.(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:过点D作DF⊥CE,垂足为点F,如图所示:DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE∥AB,∴∠DCE=∠BDC=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=3. 6.证明:∵AC=AB,AD=AE,∠BAD=∠CAE,∴∠BAD﹣∠CAB=∠CAE﹣∠CAB,即∠CAD=∠BAE.∴△ADC≌△AEB(SAS).∴DC=BE.又∵DE=BC,∴四边形BCDE是平行四边形.连接BD,CE.∵AB=AC,AD=AE,∠BAD=∠CAE,∴△ABD≌△ACE(SAS).∴BD=CE.∴四边形BCDE是矩形. 7.证明:(1)∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵四边形OCED是平行四边形,∴四边形OCED为菱形,∴CE∥OB,CE=OB,∴四边形OBCE为平行四边形;(2)解:过F作FM⊥BC于M,过O作ON⊥BC于N,∵FM⊥BC,ON⊥BC,∴ON∥FM,∵AO=OC,∴ON=AB=1,∵OF=FC,∴FM=ON=,∵∠AOB=60°,OA=OB,∴∠OAB=60°,∠ACB=30°,在 Rt△ABC中:∵AB=2,∠ACB=30°,∴BC=2,∵∠ACB=30°,FM=,∴CM=,∴BM=BC﹣CM=,∴BF=. 8.证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC=4,∴OA=AC=2,在Rt△AOE中,AE=5,OE=,∴EF=2OE=2. 9.解:如图,连接AC,则AC=BD=CF,所以∠F=∠5而且∠1=∠3﹣∠4=∠6﹣∠7=∠BEF+∠F﹣∠7=90°﹣∠7+∠F=∠1+∠F=∠3+∠5=∠2∴∠4=∠2=45°,∴∠BAF的度数为45°. 10.证明:(1)在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°.在△BCP和△DCP中,∴△BCP≌△DCP(SAS).(2)证明:如图,由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E,∴∠CDP=∠E.又∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE.∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC.(3)58.
相关试卷
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案),共8页。试卷主要包含了求线段BF的长,AE=1,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案),共7页。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案),共7页。