终身会员
搜索
    上传资料 赚现金

    中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案)

    立即下载
    加入资料篮
    中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案)第1页
    中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案)第2页
    中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案)

    展开

    这是一份中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案),共7页。
    中考数学三轮冲刺《四边形》解答题冲刺练习141.如图,ABCD的周长为16cm,它的对角线AC和BD相交于点O,OEAC交AD于E,求DCE的周长.      2.如图所示,在ABCD中,点E,F在对角线BD上,且BE=DF,求证:(1)AE=CF;(2)四边形AECF是平行四边形.      3.如图,已知在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE、CF。求证:ADE≌△CDF. 4.如图,在ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE. (1)求证:ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.      5.如图,在平行四边形ABCD中,AE,CF分别平分BAD和DCB,交对角线BD于点E,F.(1)若BCF=60°,求ABC的度数;(2)求证:BE=DF.      6.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,1=2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.      7.如图,在ABC中,AD是边BC上的中线,过点A作AEBC,过点D作与DEAB,DE与AC、AE分别交于点O、E,连接EC.(1)求证:AD=EC;(2)当ABC满足     时,四边形ADCE是菱形.      8.ABCD中,过点D作DEAB于点E,点F 在边CD上,DFBE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF3,BF4,DF5,求证:AF平分DAB.      9.如图,四边形BFCD为平行四边形,点E是AF的中点.(1)求证:CF=AD;(2)若ACB=90°,试判断四边形BFCD的形状,并说明理由.      10.如图,ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BEAD,垂足为E,连接CE,过点E作EFCE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时A的度数.      
    0.中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案)答案解析           、解答题1.解:平行四边形的对角线互相平分,OAOC,OEAC于O,AECE,平行四边形ABCD的周长为16cmADDC8cm∴△DCE的周长DECEDCADDC8cm. 2.证明:(1)四边形ABCD是平行四边形,AB=CD,ABCD,∴∠ABE=CDF.ABE和CDF中,∴△ABE≌△CDF(SAS),AE=CF.(2)如图,连接AC,与BD相交于点O.四边形ABCD是平行四边形,OA=OC,OB=OD.BE=DF,OBBE=ODDF,OE=OF.四边形AECF是平行四边形. 3.证明:四边形ABCD是菱形,AD=CD.E、F分别是CD、AD的中点,DE=DC,DF=AD,DE=DF.ADE和CDF中,DE=DF,D=D,DA=DC∴△ADE≌△CDF(SAS). 4.证明:(1)AB=AC,点D为BC的中点,∴∠BAE=CAE,AE=AE∴△ABE≌△ACE(SAS).(2)解:当AE=2AD(或AD=DE或DE=0.5AE)时,四边形ABEC是菱形理由如下:AE=2AD,AD=DE,点D为BC中点,BD=CD,四边形ABEC为平行四边形,AB=AC,四边形ABEC为菱形. 5.解:(1)四边形ABCD是平行四边形,ABCD,∴∠ABC+BCD=180°CF平分DCB,∴∠BCD=2BCF,∵∠BCF=60°∴∠BCD=120°∴∠ABC=180°﹣120°=60°(2)证明:四边形ABCD是平行四边形,ABCD,AB=CD,BAD=DCB,∴∠ABE=CDF,AE,CF分别平分BAD和DCB,∴∠BAE=BAD,DCF=DCB,∴∠BAE=DCE,∴△ABE≌△CDF(ASA),BE=DF. 6.证明:(1)如图:四边形ABCD是平行四边形,AD=BC,ADBC,3=4.∵∠1=3+5,2=4+6,∴∠1=2.∴∠5=6.ADE与CBF中,3=4,AD=BC,5=6,∴△ADE≌△CBF(ASA).AE=CF.(2)∵∠1=2,DEBF.由(1)知ADE≌△CBF,DE=BF.四边形EBFD是平行四边形. 7.证明:(1)DEAB,AEBC,四边形ABDE是平行四边形,AEBD,且AE=BDAD是BC边的中线,BD=CD,AE=CD,AECD,四边形ADCE是平行四边形,AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,AD=BD=CD,四边形ADCE是平行四边形,四边形ADCE是菱形.故答案为BAC=90°. 8.证明:(1)四边形ABCD是平行四边形,ABCD.BEDF,BEDF,四边形BFDE是平行四边形.DEAB,∴∠DEB90°四边形BFDE是矩形;(2)解:四边形ABCD是平行四边形,ABDC,∴∠DFAFAB.在RtBCF中,由勾股定理,得BC5,ADBCDF5,∴∠DAFDFA,∴∠DAFFAB,即AF平分DAB. 9.证明:(1)AE是DC边上的中线,AE=FE,CFAB,∴∠ADE=CFE,DAE=CFE.ADE和FCE中,∴△ADE≌△FCE(AAS),CF=DA.(2)解:四边形BFCD是菱形;理由如下:CD是ABC的中线,D是AB的中点,AD=BD,∵△ADE≌△FCE,AD=CF,BD=CF,ABCF,BDCF,四边形BFCD是平行四边形,∵∠ACB=90°∴△ACB是直角三角形,CD=0.5AB,BD=0.5AB,BD=CD,四边形BFCD是菱形. 10.解:(1)在RtAEB中,AC=BC,CE=AB,CB=CE, ∴∠CEB=CBE. ∵∠CEF=CBF=90°∴∠BEF=EBF,EF=BF. BEF+FED=90°EBD+EDB=90°∴∠FED=EDF, EF=FD.BF=FD. (2)能. 理由如下:若四边形ACFE为平行四边形,则ACEF,AC=EF,AC=BC,BF=EFBC=BF,∴∠BCA=45°四边形ACFE为平行四边形 CF//AD A=45° A=45°时四边形ACFE为平行四边形.   

    相关试卷

    中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案):

    这是一份中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案),共8页。试卷主要包含了求线段BF的长,AE=1,等内容,欢迎下载使用。

    中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案):

    这是一份中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案),共7页。

    中考数学三轮冲刺《四边形》解答题冲刺练习07(含答案):

    这是一份中考数学三轮冲刺《四边形》解答题冲刺练习07(含答案),共9页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map