所属成套资源:全套2023届高三下学期三模数学试题含答案
2023届浙江省温州市高三下学期5月第三次适应性考试(三模)数学试题含解析
展开
这是一份2023届浙江省温州市高三下学期5月第三次适应性考试(三模)数学试题含解析,共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2023届浙江省温州市高三下学期5月第三次适应性考试(三模)数学试题 一、单选题1.设全集,集合,则( )A. B. C. D.【答案】B【分析】用列举法写出全集,再利用并集、补集的定义求解作答.【详解】依题意,全集,而,有,所以故选:B2.已知直线,若,则( )A. B.0 C.1 D.2【答案】B【分析】根据给定的条件,利用两直线的垂直关系列式计算作答.【详解】因为直线,且,则,所以.故选:B3.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在距离车站( )A.4km B.5km C.6km D.7km【答案】B【分析】据题意用待定系数法设出两个函数y1=,y2=k2x,将两点(10,2)与(10,8)代入求出两个参数.再建立费用的函数解析式.用基本不等式求出等号成立的条件即可.【详解】解:由题意可设y1=,y2=k2x,∴k1=xy1,k2=,把x=10,y1=2与x=10,y2=8分别代入上式得k1=20,k2=0.8,∴y1=,y2=0.8x(x为仓库与车站距离),费用之和y=y1+y2=0.8x+≥2×4=8,当且仅当0.8x=,即x=5时等号成立.当仓库建在离车站5km处两项费用之和最小.故选B.【点睛】本题是函数应用中费用最少的问题,考查学生建立数学模型的能力及选定系数求解析式,基本不等式求最值的相关知识与技能,属于中档题.4.“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【分析】构造函数,利用导数讨论其单调性,利用单调性可解不等式,然后可得.【详解】设,则,所以在R上单调递增,所以不等式.即“”是“”的充要条件.故选:C5.已知数列各项为正数,满足,,则( )A.是等差数列 B.是等比数列C.是等差数列 D.是等比数列【答案】C【分析】分析可知数列的每一项都是正数,由已知条件可得出,结合等差中项法判断可得出结论.【详解】因为数列各项为正数,满足,,故对任意的,,则,所以,数列的每一项都是正数,所以,,可得,由等差中项法可知,数列是等差数列,故选:C.6.四面体满足,点在棱上,且,点为的重心,则点到直线的距离为( )A. B. C. D.【答案】A【分析】根据给定条件,建立空间直角坐标系,再利用向量求出点到直线的距离作答.【详解】四面体满足,即两两垂直,以点O为原点,以射线的正方向分别为轴的正方向建立空间直角坐标系,如图,因为,,则,于是,,所以点到直线的距离.故选:A7.如图,是椭圆的左、右顶点,是上不同于的动点,线段与椭圆交于点,若,则椭圆的离心率为( )A. B. C. D.【答案】D【分析】设 ,得到和,两式相除即可求解.【详解】设 ,则,,两式相乘得,①因为直径所对的角是直角,所以所以 ,②①除以②得,故,故选:D8.已知函数,存在实数使得成立,若正整数的最大值为6,则的取值范围为( )A. B.C. D.【答案】C【分析】分类讨论的值域,然后根据值域端点的倍数关系可解.【详解】记因为,所以,所以当时,,所以显然存在任意正整数,使得成立;当时,,所以要使正整数的最大值为6,则,解得;当时,,所以显然存在任意正整数,使得成立;当时,,所以要使正整数的最大值为6,则,解得综上,的取值范围为故选:C 二、多选题9.已知复数,下列命题正确的是( )A. B.若,则C. D.若,则为实数【答案】AC【分析】根据复数的模长公式、共轭复数的定义以及复数的乘方,结合举反例,可得答案.【详解】对于A,设,则,故A正确;对于B,当时,,故B错误;对于C,设,,,,故C正确;对于D,设,,,当或时,,故D错误.故选:AC.10.近年来,网络消费新业态、新应用不断涌现,消费场景也随之加速拓展,某报社开展了网络交易消费者满意度调查,某县人口约为万人,从该县随机选取人进行问卷调查,根据满意度得分分成以下组:、、、,统计结果如图所示.由频率分布直方图可认为满意度得分(单位:分)近似地服从正态分布,且,,,其中近似为样本平均数,近似为样本的标准差,并已求得.则( )A.由直方图可估计样本的平均数约为B.由直方图可估计样本的中位数约为C.由正态分布可估计全县的人数约为万人D.由正态分布可估计全县的人数约为万人【答案】ABD【分析】利用频率分布直方图计算出样本的平均数与中位数,可判断AB选项;利用正态分布原则可判断CD选项.【详解】对于A选项,由直方图可估计样本的平均数为,A对;对于B选项,前两个矩形的面积为,前三个矩形的面积之和为,设样本的中位数为,则,由中位数的定义可得,解得,B对;对于C选项,因为,,,所以,,所以,由正态分布可估计全县的人数约为万人,C错;对于D选项,因为,,所以,,所以,由正态分布可估计全县的人数约为万人,D对.故选:ABD.11.已知函数,其中是其图象上四个不重合的点,直线为函数在点处的切线,则( )A.函数的图象关于中心对称B.函数的极大值有可能小于零C.对任意的,直线的斜率恒大于直线的斜率D.若三点共线,则.【答案】AD【分析】由奇偶性和图象平移可判断A;利用导数求出极大值点,再由单调性与比较可判断B;利用导数求出,然后作差比较,即可判断C;根据化简即可判断D.【详解】设因为所以为奇函数,图象关于原点对称,所以的图象关于点中心对称,A正确;令,解得,当或时,,单调递增,当时,,单调递减,所以当时,取得极大值,由单调性可知,,故B错误;因为,所以,又,所以因为,所以,即,C错误;同上,可得,,当三点共线时,则有整理得因为,所以,即又,所以,整理得因为,所以,即,所以,D正确.故选:AD12.如图,圆柱的轴截面是边长为2的正方形,为圆柱底面圆弧的两个三等分点,为圆柱的母线,点分别为线段上的动点,经过点的平面与线段交于点,以下结论正确的是( )A.B.若点与点重合,则直线过定点C.若平面与平面所成角为,则的最大值为D.若分别为线段的中点,则平面与圆柱侧面的公共点到平面距离的最小值为【答案】ABD【分析】利用面面平行的性质定理可判断A;根据两平面如果有一个公共点,则这个公共点一定在它们的交线上可判断B;取特例验证可判断C;利用圆柱的对称性可知RF即为所求,然后求解可判断D.【详解】连接,由为圆柱底面圆弧的两个三等分点可知,因为平面ABCD,平面ABCD,所以平面ABCD,又,同理可得平面ABCD,因为,平面所以,平面平面ABCD,因为平面,平面,所以,A正确;记平面,则平面,且,又平面,所以必过点M,B正确;当平面为平面时,过点C作直线HF的垂线,垂足为N,连接DN,易知,因为,平面,所以平面,因为平面,所以所以为平面与平面所成二面角的平面角,在等腰梯形中,,易得其高为,即,所以,故C错误;因为分别为线段的中点,则由圆柱的对称性可知,平面与圆柱侧面的公共点中,点R到平面BCF的距离最小,记EF的中点为T,连接TQ.易知,所以,得所以,即平面与圆柱侧面的公共点到平面距离的最小值为,D正确.故选:ABD 三、填空题13.在平行四边形中,若,则___________.【答案】4【分析】根据四边形ABCD为平行四边形可得,然后由数量积的坐标表示可解.【详解】因为四边形ABCD为平行四边形,所以又所以所以故答案为:414.展开式的常数项为___________.(用最简分数表示)【答案】【分析】根据给定条件,求出二项式展开式的通项公式,再求出常数项作答.【详解】展开式通项公式,令,解得,则,所以展开式的常数项是.故答案为:15.已知内有一点,满足,则___________.【答案】/【分析】先用已知角表示出,然后利用正弦定理可解.【详解】如图,易知,又所以则由正弦定理得,解得故答案为:16.一位飞镖运动员向一个目标投掷三次,记事件“第次命中目标”,,,,则___________.【答案】【分析】由题意,计算条件概率,利用全概率公式,求得答案.【详解】由题意,,,则;,,则;故答案为:. 四、解答题17.已知函数在区间上恰有3个零点,其中为正整数.(1)求函数的解析式;(2)将函数的图象向左平移个单位得到函数的图象,求函数的单调区间.【答案】(1);(2). 【分析】(1)根据给定条件,求出的范围,再结合正弦函数的零点情况列出不等式求解作答.(2)由(1)求出函数的解析式,进而求出,再利用正切函数的单调性求解作答.【详解】(1)由,得,因为函数在区间上恰有3个零点,于是,解得,而为正整数,因此,所以.(2)由(1)知,,由,得,即有,因此,由,解得,所以函数的单调减区间为.18.如图,已知四棱台的体积为,且满足,为棱上的一点,且平面.(1)设该棱台的高为,求证:;(2)求直线与平面所成角的正弦值.【答案】(1)证明见详解(2) 【分析】(1)利用线面平行条件求AE,再结合等腰梯形可求得,然后利用棱台的体积公式求出h可证;(2)利用三角形可求,再用等体积法求出点E到平面的距离,然后可得.【详解】(1)连接,由棱台性质可知,,可得,又,,所以,所以四点共面又因为平面,平面平面,平面所以,所以四边形为平行四边形,所以,又四边形为等腰梯形,易知为梯形的高,即所以易得上下底面的面积分别为:,由体积公式有,解得所以 (2)连接由(1)知,所以平面ABCD,因为平面平面,所以平面平面ABCD,又,平面平面,平面,所以平面因为平面,所以易得记三棱锥的高为,则由得,解得又,所以所以直线与平面所成角的正弦值为19.某校开展“学习二十大,永远跟党走”网络知识竞赛.每人可参加多轮答题活动,每轮答题情况互不影响.每轮比赛共有两组题,每组都有两道题,只有第一组的两道题均答对,方可进行第二组答题,否则本轮答题结束.已知甲同学第一组每道题答对的概率均为,第二组每道题答对的概率均为,两组题至少答对3题才可获得一枚纪念章.(1)记甲同学在一轮比赛答对的题目数为,请写出的分布列,并求;(2)若甲同学进行了10轮答题,试问获得多少枚纪念章的概率最大.【答案】(1)分布列见解析,(2)4 【分析】(1)由题意可得可取0,1,2,3,4,进而分别求出概率即可求解;(2)先求得每一轮获得纪念章的概率,由每一轮相互独立,则每一轮比赛可视为二项分布,进而可得,,,由,解出即可求解.【详解】(1)由题意,可取0,1,2,3,4.,,,,,则的分布列为:01234.(2)每一轮获得纪念章的概率为,每一轮相互独立,则每一轮比赛可视为二项分布,设10轮答题获得纪念章的数量为,则,,.由,得,解得,又,得,则获得4枚纪念章的概率最大.20.图中的数阵满足:每一行从左到右成等差数列,每一列从上到下成等比数列,且公比均为实数.(1)设,求数列的通项公式;(2)设,是否存在实数,使恒成立,若存在,求出的所有值,若不存在,请说明理由.【答案】(1);(2)存在,. 【分析】(1)设出第一行从左到右成等差数列的公差,再结合已知列出方程组求解,然后用等差数列、等比数列的通项公式写出通项作答.(2)由(1)的信息结合等比数列前n项和公式求出,再按奇偶分类讨论求解作答.【详解】(1)设,第一行从左到右成等差数列的公差为,则,由,得,即有,于是,又,解得,因此,,所以,即.(2)由(1)知,当为奇数时,不等式等价于恒成立,而恒成立,则;当为偶数时, 不等式等价于恒成立,而恒成立,则 ,因此, 所以存在,使得恒成立.21.已知抛物线与双曲线相交于两点是的右焦点,直线分别交于(不同于点),直线分别交轴于两点.(1)设,求证:是定值;(2)求的取值范围.【答案】(1)证明见解析;(2). 【分析】(1)根据给定条件,设出直线的方程,与抛物线的方程联立即可计算作答.(2)由(1)求出直线的方程并求出点的横坐标,直线的方程与双曲线的方程联立,借助直线求出点的横坐标,再列式求出范围作答.【详解】(1)由是直线与抛物线的两个交点,显然直线不垂直y轴,点,故设直线的方程为,由消去并整理得,所以为定值.(2)由(1)知,直线的斜率,方程为,令,得点的横坐标,设,由消去得,,,而直线的方程为,依题意,令,得点的横坐标,因此,所以的取值范围是.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.22.已知函数.(1)证明:函数在上有且只有一个零点;(2)当时,求函数的最小值;(3)设,若对任意的恒成立,且不等式两端等号均能取到,求的最大值.【答案】(1)证明过程见详解(2)(3) 【分析】(1)将证明的结论转化为在上有且只有一个零点.然后对函数求导判断函数的单调性,利用零点存在性定理即可证明;(2)对函数求导,判断函数的单调性进而求出函数的最小值;(3)结合(1)(2)的结论和已知条件可知,使最大,则,则,且等号取到与函数相切,然后利用导数的几何意义进行求解即可.【详解】(1)令,得,令,要证函数在上有且只有一个零点,即证在上有且只有一个零点.因为,所以函数在上单调递减,由,,则,由零点存在性定理可知,函数在上有且只有一个零点.故得证.(2)对函数求导可得,因为,所以当时,显然,则;当时,令,,因为,(令,则,所以在上单调递增,则,所以,)所以当时,在上单调递增,故,则,,则函数在上单调递减,在上单调递增,所以.(3)由(1)知,函数在上有且只有一个零点,由(2)知函数在上单调递减,在上单调递增,且当,函数趋近于,考虑到,则,则,当变大时,则减小.要使最大,则,则,且等号取到与函数相切,设切点坐标为,则,则有,即,解得,(下面证明唯一性)可化为,,令,,函数在上单调递减,则,当时,因为时,恒有,则,所以,当时,因为时,恒有,则,所以,所以函数在上单调递减,在上单调递增,又因为函数的最小正周期为,所以函数与在上有唯一的交点,草图如下:故,所以的最大值为.【点睛】利用导数研究函数的最值问题时,一般需要先对函数求导,根据导函数的方法研究函数的单调性,求出极值,结合题中条件即可求出最值(有时解析式中会含有参数,求解时,要讨论参数的不同取值范围,再判断函数的单调性,进行求解).
相关试卷
这是一份浙江省温州市2023届高三下学期5月第三次适应性考试(三模)数学试题,共5页。试卷主要包含了 设全集,集合,则, 已知直线,若,则, “”是“”的, 已知复数,下列命题正确的是等内容,欢迎下载使用。
这是一份浙江省温州市2023届高三下学期5月第三次适应性考试(三模)数学试题,共13页。
这是一份浙江省温州市2023届高三下学期5月第三次适应性考试(三模)数学试题及参考答案,文件包含浙江省温州市2023届高三下学期5月第三次适应性考试三模数学参考答案pdf、浙江省温州市2023届高三下学期5月第三次适应性考试三模数学试题pdf等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。