人教版八年级上册13.3.2 等边三角形同步测试题
展开
这是一份人教版八年级上册13.3.2 等边三角形同步测试题,共6页。
等边三角形(提高)【学习目标】1. 掌握等边三角形的性质和判定.2. 掌握含30°角的直角三角形的一个主要性质.3. 熟练运用等边三角形的判定定理与性质定理进行推理和计算.【要点梳理】 要点一、等边三角形
等边三角形定义:三边都相等的三角形叫等边三角形. 要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.要点三、等边三角形的判定等边三角形的判定:
(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点四、含30°的直角三角形
含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半. 要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.【典型例题】类型一、等边三角形 1、(2015秋·黄冈期中)如图,已知点B、C、D在同一条直线上,和都是等边三角形,BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.【答案与解析】(1)证明:和都是等边三角形 ∴BC=AC,CE=CD,∠BCA=∠ECD=60° ∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD在△BCE和△ACD中 ∴△BCE≌△ACD(SAS) (2)由(1)知△BCE≌△ACD则∠CBF=∠CAH,BC=AC又∵和都是等边三角形,且点B、C、D在同一条直线上,∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF,在△BCF和△ACH中 ∴△BCF≌△ACH(ASA)∴CF=CH,又∵∠FCH=60°∴△CHF是等边三角形∴∠FHC=∠HCD=60°,∴FH∥BD【总结升华】本题考查等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键。举一反三:【变式】(2014秋•利通区校级期末)如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC= 度.【答案】120°.解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°. 2、如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE. 求证:CE=DE.【思路点拨】此题如果直接找含有CE和DE的三角形找不到,也不方便证∠ECD=∠EDC,联想的全等三角形的性质,把原等边△ABC扩展成大等边△BEF后,易证△EBC≌△EFD.【答案与解析】证明:延长BD至F,使DF=AB,连接EF∵△ABC为等边三角形∴AB=BC, ∠B=60º∵AE=BD,DF=AB∴AE+AB=BD+DF即BE=BF∴△BEF为等边三角形∴BE=EF, ∠F=60º在△EBC与△EFD中∴△EBC≌△EFD∴EC=ED【总结升华】本题主要考查了等边三角形的性质,全等三角形的判定,关键是在现有图形不能解决问题时,将原图补全成为有对称美感的等边三角形,对学生综合运用知识解答问题的能力要求较高.举一反三:【变式】如图所示,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.试探究线段CN、BM、MN之间的关系,并加以证明.【答案】对于此类题,三条线段之间的关系一般是它们的和差关系,证明方法通常采用截长补短法. 证明:如图所示,延长AC至M1,使CM1=BM,连接DM1. ∵ △ABC是正三角形,∴ ∠ABC=∠ACB=60°. ∵ ∠BDC=120°,且BD=CD, ∴ ∠DBC=∠DCB=30°. ∴ ∠ABD=∠ACD=90°. 又∵ BD=CD,BM=CM1, ∴ Rt△BDM≌Rt△CDM1(SAS). ∴ DM=DM1,∠BDM=∠CDM1, ∴ ∠MDM1=∠MDC+∠CDM1=∠MDC+∠BDM=∠BDC=120°. 又∵ ∠MDN=60°.∴ ∠M1DN=∠MDN=60°. 又∵ DM=DM1,DN=DN,∴ △MDN≌△M1DN(SAS). ∴ MN=M1N=NC+M1C=CN+BM.3、(2014春•宜宾校级期末)如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间. 【答案与解析】解:∵在A处观测海岛B在北偏东60°方向,∴∠BAC=30°,∵C点观测海岛B在北偏东30°方向,∴∠BCD=60°,∴∠BAC=∠CBA=30°,∴AC=BC∵D点观测海岛B在北偏西30°方向,∴∠BDC=60°,∴∠BCD=60°,∴∠CBD=60°,∴△BCD为等边三角形,∴BC=BD,∵BC=20,∴BC=AC=CD=20,∵船以每小时10海里的速度从A点航行到C处,又以同样的速度继续航行到D处,∴船从A点到达C点所用的时间为:20÷10=2(小时),船从C点到达D点所用的时间为:20÷10=2(小时),∵船上午11时30分在A处出发,∵D点观测海岛B在北偏西30°方向到达D点的时间为13时30分+2小时=15时30分,答:轮船到达C处的时间为13时30分,到达D处的时间15时30分.【总结升华】本题主要考查等边三角形的判定与性质、外角的性质、余角的性质等知识点,关键在于通过求相关角的度数,推出相关边的关系,熟练运用航程、时间、速度的关系式,认真地进行计算.类型二、含30°的直角三角形4、如图所示,∠A=60°,CE⊥AB于E,BD⊥AC于D,BD与CE相交于点H,HD=1,HE=2,试求BD和CE的长.【答案与解析】解:∵BD⊥AC于D,∠A=60°,∴∠ABD=90°-60°=30°,在Rt△BEH中,∠HEB=90°,∠EBH=30°.∴BH=2EH=4.同理可得,CH=2HD=2,∴BD=BH+HD=4+1=5.CE=CH+HE=2+2=4.【总结升华】已知条件中出现60°角与直角三角形并存时,应考虑到“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”,进而把三角形中角与角的关系转化为边与边之间的关系,充分应用转化思想来解决问题.举一反三:【变式】如图所示,在△ABC中,AB=AC,D是BC边上的点,DE⊥AB,DF⊥AC,垂足分别为点E、F,∠BAC=120°. 求证:.【答案】证明:∵ 在△ABC中,AB=AC,∠BAC=120°,∴ ∠B=∠C=.∵ DE⊥AB,DF⊥AC,∴ ,.∴ .5、如图所示,在等边△ABC中,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:BP=2PQ.【思路点拨】(1)从结论入手,从要证BP=2PQ联想到要求∠PBQ=30°.(2)不能盲目地用截长补短法寻找要证的“倍半”关系.本题适合用“两头凑”的方法,从结论入手找已知条件,即BP=2PQ∠PBQ=30°,另一方面从已知条件找结论,即由条件△ACD≌△BAE∠BPQ=60°∠PBQ=30°,分析时要注意联想与题目有关的性质定理.【答案与解析】证明:∵ △ABC为等边三角形, ∴ AC=BC=AB,∠C=∠BAC=60°.在△ACD和△BAE中,∴ △ACD≌△BAE(SAS).∴ ∠CAD=∠ABE. ∵ ∠CAD+∠BAP=∠BAC=60°,∴ ∠ABE+∠BAP=60°,∴ ∠BPQ=60°.∵ BQ⊥AD,∴ ∠BQP=90°,∴ ∠PBQ=90°-60°=30°,∴ BP=2PQ. 【总结升华】本题主要考查了等边三角形的性质、三角形外角的性质、含30°直角三角形的性质及全等三角形的判定与性质,考查了学生综合运用知识解答问题的能力.
相关试卷
这是一份初中人教版13.3.2 等边三角形课时练习,共7页。
这是一份数学八年级上册11.3.1 多边形随堂练习题,共6页。
这是一份人教版七年级上册4.3.1 角课后练习题,共10页。