冲刺2023年高考数学考点押题模拟预测卷01(新高考全国Ⅰ卷)(原卷版)
展开这是一份冲刺2023年高考数学考点押题模拟预测卷01(新高考全国Ⅰ卷)(原卷版),共6页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
2023年新高考全国Ⅰ卷模拟测试卷01
(满分150分,考试用时120分钟)
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.
1.已知集合和,则( )
A. B.
C. D.
2.已知复数 ,i为虚数单位, 则复数z 在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知多项式,则( )
A.11 B.74 C.86 D.
4.在如图的平面图形中,已知,则的值为
A. B.
C. D.0
5.已知函数的图象关于直线对称,则的值为( )
A. B. C. D.
6.三星堆古遗址作为“长江文明之源",被誉为人类最伟大的考古发现之一.3号坑发现的神树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm,圆柱底面外圆周和正方体的各个顶点均在球O上,则球O的表面积为( )
A. B. C. D.
7.已知数列的前n项和为,,若对任意正整数n,,,则实数a的取值范围是( )
A. B. C. D.
8.已知,,,,则( )
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有2个是符合要求的,全部选对的得5分,有选错的得0分,部分选对的得2分.
9.下列命题中,正确的命题是( )
A.某校三个年级,高一有400人,高二有360人.现用分层抽样的方法从全校抽取57人,已知从高一抽取了20人,则应从高三抽取19人
B.在n次独立重复试验中,用X表示事件A发生的次数,p为每次试验中事件A发生的概率,若,,则
C.设随机变量服从正态分布,若,则
D.已知,则
10.已知正数a,b满足,则( )
A.的最小值为 B.的最小值为
C.的最小值为 D.的最小值为
11.已知函数,下列说法正确的有( )
A.在上单调递增
B.若,则
C.函数的图象可以由向右平移个单位得到
D.若函数在上恰有两个极大值点,则
12.已知偶函数与奇函数的定义域均为R,且满足,,则下列关系式一定成立的是( )
A. B.f(1)=3
C.g(x)=-g(x+3) D.
三、填空题:本题共4小题,每小题5分,共20分.
13.过氧化氢()是一种重要的化学品,工业用途广泛,通过催化和直接合成目前被认为是一种最有潜力替代现有生产方法的绿色环保生产途径.在自然界中,已知氧的同位素有17种,氢的同位素有3种,现有由,及,,五种原子中的几种构成的过氧化氢分子,则分子种数最多为______________.
14.已知是定义域为R的奇函数,且当时,则________.
15.在平面直角坐标系xOy中,已知圆,圆.若圆上存在两点A,B,且圆上恰好存在一点P,使得四边形OAPB为矩形,则实数a的取值集合是_________.
16.如图,在正方体中,点在线段上运动,有下列判断:
①平面平面;
②平面
③异面直线与所成角的取值范围是;
④三棱锥的体积不变.
其中,正确的是__________(把所有正确判断的序号都填上).
四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17.在①,②,③这三个条件中任选一个,补充在下面的问题中,并解答问题.
在中,内角、、的对边分别为,,,且满足___________.
(1)求;
(2)若的面积为,为的中点,求的最小值.
18.已知数列,满足,且是公差为1的等差数列,是公比为2的等比数列.
(1)求,的通项公式;
(2)求的前n项和.
19.三棱柱中,,,线段的中点为,且.
(1)求与所成角的余弦值;
(2)若线段的中点为,求二面角的余弦值.
20.人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).
(1)求首次试验结束的概率;
(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.
①求选到的袋子为甲袋的概率,
②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.
21.已知双曲线的实轴长为4,左、右顶点分别为,经过点的直线与的右支分别交于两点,其中点在轴上方.当轴时,
(1)设直线的斜率分别为,求的值;
(2)若,求的面积.
22.已知函数.
(1)若,,求实数a的取值范围;
(2)设是函数的两个极值点,证明:.
相关试卷
这是一份冲刺2023年高考数学考点押题模拟预测卷01(新高考全国Ⅰ卷)(解析版),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份冲刺2023年高考数学考点押题模拟预测卷03(新高考全国Ⅰ卷)(原卷版),共6页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份冲刺2023年高考数学考点押题模拟预测卷05(新高考全国Ⅰ卷)(原卷版),共7页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。