新高考数学临考题号押题第4题 排列组合与二项式定理(2份打包,原卷版+解析版)
展开
这是一份新高考数学临考题号押题第4题 排列组合与二项式定理(2份打包,原卷版+解析版),文件包含新高考数学临考题号押题第4题排列组合与二项式定理新高考解析版docx、新高考数学临考题号押题第4题排列组合与二项式定理新高考原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
押新高考卷4题排 列 组 合 与 二 项 式 定 理考点3年考题考情分析排列组合与二项式定理2022年新高考Ⅰ卷第13题2022年新高考Ⅱ卷第5题2020年新高考Ⅰ卷第3题2020年新高考Ⅱ卷第6题排列组合与二项式定理均是以小题的形式进行考查,难度较易或一般,新高考冲刺复习中,分类加法原理、分步乘法原理,排列数及组合数,二项式定理、二项展开式系数都是重点复习内容,可以预测2023年新高考命题方向将继续对排列组合和二项式定理选其一展开命题. 1.分类计数原理(加法原理).2.分步计数原理(乘法原理).3.排列数公式 ==.(,∈N*,且).注:规定.4.组合数公式 ===(∈N*,,且).5.排列数与组合数的关系 .6.单条件排列以下各条的大前提是从个元素中取个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:个元在固定位的排列有种.②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;③插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.(3)两组元素各相同的插空 个大球个小球排成一列,小球必分开,问有多少种排法?当时,无解;当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.7.分配问题(1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.(2)(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有.8.二项式定理 ;二项展开式的通项公式. 1.(2022·新高考Ⅰ卷高考真题)的展开式中的系数为________________(用数字作答).2.(2022·新高考Ⅱ卷高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )A.12种 B.24种 C.36种 D.48种3.(2020·新高考Ⅰ卷高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种 B.90种C.60种 D.30种4.(2020·新高考Ⅱ卷高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A.2种 B.3种 C.6种 D.8种 1.(2023·辽宁朝阳·校联考一模)6名老师被安排到甲、乙、丙三所学校支教,每名老师只去1所学校,甲校安排1名老师,乙校安排2名老师,丙校安排3名老师,则不同的安排方法共有( )A.30种 B.60种 C.90种 D.120种2.(2023·湖南湘潭·统考二模)2022年男足世界杯于2022年11月21日至2022年12月17日在卡塔尔举行.现要安排甲、乙等5名志愿者去A,B,C三个足球场服务,要求每个足球场都有人去,每人都只能去一个足球场,则甲、乙两人被分在同一个足球场的安排方法种数为( )A.12 B.18 C.36 D.483.(2023·广东佛山·统考二模)“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的学术大师.已知浙江大学、复旦大学、武汉大学、中山大学均有开设数学学科拔尖学生培养基地,某班级有5位同学从中任选一所学校作为奋斗目标,则每所学校至少有一位同学选择的不同方法数共有( )A.120种 B.180种 C.240种 D.300种4.(2023·浙江·校联考三模)的展开式中常数项为( )A.280 B. C.160 D.5.(2023·浙江嘉兴·统考二模)的展开式中的系数为( )A.-60 B.240 C.-360 D.7206.(2023·江苏常州·校考二模)的展开式中x2y3项的系数等于80,则实数a=( )A.2 B.±2 C. D.±7.(2023·安徽·统考一模)为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有( )种.A.40 B.24 C.20 D.128.(2023·重庆·统考二模)设,则( )A. B. C.1 D.29.(2023·辽宁大连·校联考模拟预测)若二项式的展开式中只有第3项的二项式系数最大,则展开式中项的系数为( )A.32 B. C.16 D.10.(2023·湖北·校联考模拟预测)新高考数学中的不定项选择题有4个不同选项,其错误选项可能有0个、1个或2个,这种题型很好地凸显了“强调在深刻理解基础之上的融会贯通、灵活运用,促进学生掌握原理、内化方法、举一反三”的教考衔接要求.若某道数学不定项选择题存在错误选项,且错误选项不能相邻,则符合要求的4个不同选项的排列方式共有( )A.24种 B.36种 C.48种 D.60种11.(2023·广东·统考一模)如图,在两行三列的网格中放入标有数字的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有( )A.96种 B.64种 C.32种 D.16种12.(2023·浙江嘉兴·统考模拟预测)若一个三位数的各个数位上的数字之和为8,则我们称是一个“叔同数”,例如“125,710”都是“叔同数”.那么“叔同数”的个数共有( )A.34个 B.35个 C.36个 D.37个13.(2023·江苏连云港·统考模拟预测)现要从A,B,C,D,E这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A不能安排在甲岗位上,则安排的方法有( )A.56种 B.64种 C.72种 D.96种14.(2023·重庆万州·重庆市万州第二高级中学校考模拟预测)某社区活动需要连续六天有志愿者参加服务,每天只需要一名志愿者,现有甲、乙、丙、丁、戊、己6名志愿者,计划依次安排到该社区参加服务,要求甲不安排第一天,乙和丙在相邻两天参加服务,则不同的安排方案共有( )A.72种 B.81种 C.144种 D.192种15.(2023·重庆九龙坡·统考二模)《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著,该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某学习小组有甲、乙、丙、丁四人,该小组要收集九宫算、运筹算、了知算、成数算、把头算、珠算6种算法的相关资料,要求每种算法只能一人收集,每人至少收集其中一种,则不同的分配方案种数有( )A.1560种 B.2160种 C.2640种 D.4140种16.(2023·山东菏泽·统考一模)为了迎接“第32届菏泽国际牡丹文化旅游节”,某宣传团体的六名工作人员需要制作宣传海报,每人承担一项工作,现需要一名总负责,两名美工,三名文案,但甲,乙不参与美工,丙不能书写文案,则不同的分工方法种数为( )A.9种 B.11种 C.15种 D.30种17.(2023·山东潍坊·校考模拟预测)已知的展开式中含的项的系数为24,则展开式中含项的系数的最小值为( )A.83 B.90 C.96 D.10018.(2023·湖北·统考模拟预测)一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式展开式的常数项为( )A. B.60 C.120 D.24019.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知展开式的常数项为76,则( )A.1 B.61 C.2 D.20.(2023·江苏南通·二模)已知的展开式中各项系数和为243,则展开式中常数项为( )A.60 B.80 C. D.
相关试卷
这是一份新高考数学临考题号押题第3题 平面向量(2份打包,原卷版+解析版),文件包含新高考数学临考题号押题第3题平面向量新高考解析版docx、新高考数学临考题号押题第3题平面向量新高考原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份新高考数学临考题号押题第7题 三角函数(2份打包,原卷版+解析版),文件包含新高考数学临考题号押题第7题三角函数新高考解析版docx、新高考数学临考题号押题第7题三角函数新高考原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份新高考数学临考题号押题第6题 立体几何(2份打包,原卷版+解析版),文件包含新高考数学临考题号押题第6题立体几何新高考解析版docx、新高考数学临考题号押题第6题立体几何新高考原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。