天津市北辰区2023届高三三模数学试题(无解析)
展开天津市北辰区2023届高三三模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设集合,,,则( )
A. B. C. D.
2.已知为非零实数,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
3.函数的图象大致为( )
A. B.
C. D.
4.少年强则国强,少年智则国智.党和政府一直重视青少年的健康成长,出台了一系列政策和行动计划,提高学生身体素质.为了加强对学生的营养健康监测,某校在3000名学生中,抽查了100名学生的体重数据情况.根据所得数据绘制样本的频率分布直方图如图所示,则下列结论正确的是( )
A.样本的众数为65 B.样本的第80百分位数为72.5
C.样本的平均值为67.5 D.该校学生中低于的学生大约为1000人
5.设,,,则( )
A. B.
C. D.
6.设,,则( )
A. B.
C. D.
7.设、分别为双曲线(,)的左、右焦点.若在双曲线右支上存在点P,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线与抛物线的准线围成三角形的面积为( )
A. B. C. D.
8.中国雕刻技艺举世闻名,雕刻技艺的代表作“鬼工球”,取鬼斧神工的意思,制作相当繁复,成品美轮美奂.1966年,玉石雕刻大师吴公炎将这一雕刻技艺应用到玉雕之中,他把玉石镂成多层圆球,层次重叠,每层都可灵活自如的转动,是中国玉雕工艺的一个重大突破.今一雕刻大师在棱长为12的整块正方体玉石内部套雕出一个可以任意转动的球,在球内部又套雕出一个正四面体(所有棱长均相等的三棱锥),若不计各层厚度和损失,则最内层正四面体的棱长最长为( )
A. B. C. D.6
二、未知
9.已知函数(,,)的部分图象如图所示,关于该函数有下列四个说法:
①的图象关于点对称;
②的图象关于直线对称;
③的图象可由的图象向左平移个单位长度得到;
⑧若方程在上有且只有两个极值点,则t的最大值为.
以上四个说法中,正确的个数为( )
A.1 B.2 C.3 D.4
三、填空题
10.已知是虚数单位,复数的虚部为________.
11.在的展开式中,的系数是________.
12.直线经过点,与圆相交截得的弦长为,则直线的方程为________.
四、双空题
13.有两台车床加工同一型号的零件,第一台车床加工的优秀率为15%,第二台车床加工的优秀率为10%.假定两台车床加工的优秀率互不影响,则两台车床加工零件,同时出现优秀品的概率为________;若把加工出来的零件混放在一起,已知第一台车床加工的零件数占总数的60%,第二台车床加工的零件数占总数的40%,现任取一个零件,则它是优秀品的概率为________.
五、未知
14.在中,,,若为其重心,试用,表示为________;若为其外心,满足,且,则的最大值为________.
15.设,对任意实数x,记.若有三个零点,则实数a的取值范围是________.
六、解答题
16.在中,角A,B,C所对的边分别为a,b,c.满足.
(1)求角B的大小;
(2)设,.
(ⅰ)求c的值;
(ⅱ)求的值.
17.如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,.
(1)求证:平面;
(2)求点到直线的距离;
(3)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出线段的值,若不存在,说明理由.
18.设是等差数列,其前项和为(),为等比数列,公比大于1.已知,,,.
(1)求和的通项公式;
(2)设,求的前项和;
(3)设,求证:.
七、未知
19.已知椭圆的右顶点为A,上顶点为B,O为坐标原点,椭圆内一点M满足,.
(1)求椭圆的离心率;
(2)椭圆上一点P在第一象限,且满,与椭圆交于点Q,直线交的延长线于点D.若的面积为,求椭圆的标准方程.
20.已知函数,其中.
(1)当时,求函数在点上的切线方程.(其中e为自然对数的底数)
(2)已知关于x的方程有两个不相等的正实根,,且.
(ⅰ)求实数a的取值范围;
(ⅱ)设k为大于1的常数,当a变化时,若有最小值,求k的值.
天津市北辰区2023届高三三模数学试题 Word版无答案: 这是一份天津市北辰区2023届高三三模数学试题 Word版无答案,共6页。
天津市北辰区2023届高三三模数学试题 Word版含解析: 这是一份天津市北辰区2023届高三三模数学试题 Word版含解析,共23页。
2023届天津市北辰区高三三模数学试题含解析: 这是一份2023届天津市北辰区高三三模数学试题含解析,共20页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。