所属成套资源:(新教材)高考数学必背知识手册
高考 第十章 概率(公式、定理、结论图表)(新教材)
展开
第十章 概率(公式、定理、结论图表)1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.【特别提醒】如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.3. 古典概型的概率公式P(A)=.典例1:5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求: (1)甲中奖的概率P(A); (2)甲、乙都中奖的概率P(B); (3)只有乙中奖的概率P(C); (4)乙中奖的概率P(D). 【思路点拨】先确定事件总数,再确定四个事件中包含的基本事件个数,用古典概率公式求解.【解析】甲、乙两人按顺序各抽一张,5张奖券分别为A1,A2,B1,B2,B3,其中A1,A2为中奖券,则基本事件为(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,A1),(A2,B1),(A2,B2),(A2,B3),(B1,A1),(B1,A2),(B1,B2),(B1,B3),(B2,A1),(B2,A2),(B2,B1),(B2,B3),(B3,A1),(B3,A2),(B3,B1),(B3,B2),共20种.(1)若“甲中奖”,则有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,A1),(A2,B1),(A2,B2),(A2,B3),共8种,故P(A). (2)甲、乙都中奖含有的基本事件有(A1,A2),(A2,A1),共2种,所以P(B)=.(3)“只有乙中奖”的基本事件有(B1,A1),(B2,A1),(B3,A1),(B1,A2),(B2,A2),(B3,A2),共6种,故.(4)“乙中奖”的基本事件有(A2,A1),(B1,A1),(B2,A1),(B3,A1),(Al,A2),(B1,A2),(B2,A2),(B3,A2),共8种,故.【总结升华】1、利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏.2、古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数和事件所包含的结果数;(4)用公式求出概率并下结论.4.事件的关系与运算 定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅P(A∪B)=1 5.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).②若事件B与事件A互为对立事件,则P(A)=1-P(B).典例2:经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?【思路点拨】利用互斥事件概率加法公式计算.【解析】记“等候的人数为0”为事件A,“1人等候”为事件B,“2人等候”为事件C,“3人等候”为事件D,“4人等候”为事件E,“5人及5人以上等候”为事件F,则易知A、B、C、D、E、F互斥. (1)记“至多2人排队等候”为事件G,则G=A∪B∪C,∴ P(G)=P(A+B+C)=P(A)+P(B)+P(C) =0.1+0.16+0.3=0.56. (2)记“至少3人排队等候”为事件H,则H=D∪E∪F,∴ P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.【总结升华】第(2)问也可以这样解:因为G与H是对立事件,所以P(H)=1-P(G)=1-0.56=0.44.