2023年山东省聊城市莘县中考二模数学试题(含答案)
展开2023年山东省聊城市莘县中考二模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2.如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是( )
A. B. C. D.
3.神舟十三号飞船在近地点高度200000m,远地点高度356000m的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为( )
A. B. C. D.
4.某城市几条道路的位置关系如图所示,道路,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为( )
A.23° B.25° C.27° D.30°
5.如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为( )
A. B. C. D.
6.一次函数与反比例函数在同一坐标系中的大致图象是( )
A. B. C. D.
7.如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为( )
A. B.3 C.4 D.5
8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )
A. B.
C. D.
9.如图,在边长为2的正方形中,是以为直径的半圆的切线,则图中阴影部分的面积为( )
A. B. C.1 D.
10.二次函数的复习课中,夏老师给出关于x的函数(k为实数).夏老师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生独立思考后,黑板上出现了一些结论,夏老师作为活动一员,又补充了一些结论,并从中选择了如下四条:
①存在函数,其图象经过点;
②存在函数,该函数的函数值y始终随x的增大而减小;
③函数图象有可能经过两个象限;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.
上述结论中正确的为 .
A.①②③ B.①②④ C.②③④ D.①②③④
11.如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1个单位长度分别沿B→A→D→C和B→C→D方向运动至相遇时停止.设运动时间为t(秒),△BPQ的面积为S(平方单位),S与t的函数图象如图2,则下列结论错误的个数有( )
①当t=4秒时,S=;②AD=4;③当4≤t≤8时,S=;④当t=9秒时,BP平分梯形ABCD的面积.
A.1 B.2 C.3 D.4
12.将关于x的一元二次方程x2﹣px+q=0变形为x2=px﹣q,就可以将x2表示为关于x的一次多项式,从而达到“降次”的目的,又如x3=x•x2=x(px﹣q)=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:x2﹣x﹣1=0,且x>0,则x3+1的值为( )
A.1+ B.1﹣ C.3﹣ D.3+
二、填空题
13.若关于x的不等式组,仅有3个整数解,则a的取值范围是___________.
14.从,,1,2,7中任取一数作为a,使抛物线的开口向上的概率为___________.
15.如图,、区域为驾驶员的盲区,驾驶员视线与地面的夹角,视线与地面的夹角,点A,F为视线与车窗底端的交点,,,.若A点到B点的距离,则盲区中的长度是___________米.(参者数据:,,,)
16.如图,AB为半的直径,为半圆弧的三等分点,过B,两点的半的切线交于点,若AB的长是,则PA的长是________.
17.规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点按序列“011…”作变换,表示点O先向右平移一个单位得到,再将绕原点顺时针旋转90°得到,再将绕原点顺时针旋转90°得到…依次类推.点经过“011011011”变换后得到点的坐标为______.
三、解答题
18.先化简,再求值:,其中m=tan60°-.
19.如图,线段DE与AF分别为△ABC的中位线与中线.
(1)求证:AF与DE互相平分;
(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.
20.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.
等级 | 时长:(单位:分钟) | 人数 | 所占百分比 |
4 | |||
20 |
| ||
| |||
|
根据图表信息,解答下列问题:
(1)本次调查的学生总人数为_________,表中的值为_________;
(2)该校共有500名学生,请你估计等级为的学生人数;
(3)本次调查中,等级为的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.
21.如图,直线分别交轴、轴于、两点,与双曲线在第二象限内的交点为,轴于点,且.
(1)求双曲线的关系式;
(2)设点是双曲线上的一点,且的面积是的面积的4倍,求点的坐标.
22.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.
(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
23.2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.
(1)求该滑雪场的高度h;
(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.
24.如图,在⊙O中,AB是直径,弦CD⊥AB,垂足为H,E为上一点,F为弦DC延长线上一点,连接FE并延长交直径AB的延长线于点G,连接AE交CD于点P,若FE=FP.
(1)求证:FE是⊙O的切线;
(2)若⊙O的半径为8,sinF=,求BG的长.
25.综合与探究
如图,在平面直角坐标系中,已知抛物线与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使≌,若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形.
参考答案:
1.C
2.C
3.A
4.B
5.C
6.B
7.D
8.A
9.D
10.B
11.A
12.D
13.
14./0.6
15.
16.
17.
18.;
19.(1)见解析
(2)AF=BC,理由见解析
20.(1)50,
(2)200
(3)
21.(1)
(2)点或
22.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B型车2辆最少.
23.(1)235m
(2)甲种设备每小时的造雪量是15m3,则乙种设备每小时的造雪量是50m3
24.(1)见解析
(2)2
25.(1);B(8,0);E(3,-4);
(2)()或();
(3)或.
2023年山东省聊城市莘县中考三模数学试题(含答案): 这是一份2023年山东省聊城市莘县中考三模数学试题(含答案),共12页。试卷主要包含了不允许使用计算器,如图在中,,,,若,则的度数是等内容,欢迎下载使用。
2023年山东省聊城市莘县中考数学一模试卷(含答案): 这是一份2023年山东省聊城市莘县中考数学一模试卷(含答案),共34页。试卷主要包含了选择题,填空题,解答题,八年级抽取成绩的平均数等内容,欢迎下载使用。
2021年山东省聊城市莘县中考数学二模试卷(含答案): 这是一份2021年山东省聊城市莘县中考数学二模试卷(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。