数学北师大版1 用树状图或表格求概率第2课时教案设计
展开第三章 概率的进一步认识
1 用树状图或表格求概率
第2课时
一、教学目标
1.进一步经历画树状图或列表的方法计算两步试验的概率.
2.能利用概率解决一些简单的实际问题,体会概率是反映现实生活中事件发生可能性大小的模型.
3.经历利用画树状图和列表法求出概率并解决问题的过程.
4.进一步体会“数学就在我们身边”,发展“用数学”的意识与能力.
二、教学重难点
重点:巩固画树状图或列表的方法计算两步试验的概率.
难点:利用概率解决一些简单的实际问题.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
教学环节 | 教师活动 | 学生活动 | 设计意图 |
环节一 创设情境 | 【复习回顾】 教师活动:先提出问题,学生思考后回答问. 想一想:你学会了用什么方法求某事件的概率? 预设:画树状图和列表法. 追问:运用这两种方法求概率时,需要注意什么? 预设:用画树状图或列表的方法求概率时,应注意各种结果出现的可能性务必相同. 【交流】 你们玩过下面的游戏吗? 预设:玩过. 小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者. 思考:你认为该游戏公平吗? |
思考回答.
了解游戏规则,并尝试判断. |
复习回顾求概率的方法,为进一步的学习相关知识做准备.
通过创设玩石头剪刀布的游戏,激发学生学习的兴趣,也为接下来新课的学习埋下伏笔. |
环节二 探究新知 | 【思考】 教师活动:通过思考两个问题,让学生知道怎样的游戏是公平的,如何判定游戏的公平性. 问题1:什么样的游戏是公平的呢? 预设:要判断游戏的公平性,首先用画树状图或列表格的方法求出各事件发生的概率,若概率相同,则游戏公平;若概率不相同,则游戏不公平. 问题2:创设情境中的“石头、剪刀、布的游戏是否是公平的体现呢,该如何去判定? 预设: 实际上,在真正玩“石头、剪刀、布”游戏时,双方做这三种手势的可能性不一定相同,每人都有自己的习惯与偏好.因此需要假设小明和小颖每次做这三种手势的可能性相同,使它成为一个等可能概型的问题.在此基础上所做的游戏才能去判定是否公平. |
先分组讨论,再派代表发言,最后与老师一起归纳.
|
通过两个问题串,引导学生思考怎样的游戏是公平的,该如何去判定游戏的公平性,也为接下来例题的讲解做准备. |
环节三 应用新知 | 【典型例题】 教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程. 例 小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者. 假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗? 分析:因为小明和小颖每次出这三种手势的可能性相同,所以利用树状图列出所有可能出现的结果. 解:画树状图如图所示: 总共有9种可能的结果,每种结果出现的可能性相同,而两人手势相同的结果有三种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为 小明胜小颖的结果有三种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为 小颖胜小明的结果也有三种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为所以,这个游戏对三人是公平的. 追问:你能用列表的方法来解答吗? 预设:将可能出现的结果列表如下: 总共有9种可能的结果,每种结果出现的可能性相同: ①两人手势相同的结果有3种,所以小凡获胜的概率为 ②小明胜小颖的结果有3种,所以小明获胜的概率为 ③小颖胜小明的结果也有3种,所以小颖获胜的概率为 所以,这个游戏对三人是公平的. 【做一做】 小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数? 分析:掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就大.列表得到点数之和最多的是7,从而选择7获胜的概率最大. 解:经分析可得,掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就大.利用列表法列出所有可能出现的结果: 从表格中,能看出和为7出现的次数最多,所以选择7,概率最大! |
学生试着做一做,再对比发现不足.
学生独立完成,与结果对比.
|
通过解决石头、剪刀、布游戏的公平性问题,进一步巩固用画树状图和列表法求概率的过程,培养学生的应用意识.
通过解决猜数游戏的策略问题,进一步巩固求概率的方法.
|
环节四 巩固新知 | 教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解. 1.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率. 2.准备两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1,2,3.从每组牌中各摸出一张牌. (1)两张牌的牌面数字和等于1的概率是多少? (2)两张牌的牌面数字和等于2的概率是多少? (3)两张牌的牌面数字和为几的概率最大? (4)两张牌的牌面数字和大于3的概率是多少? 3.掷两枚质地均匀的骰子,求下列事件的概率: (1)至少有一枚骰子的点数为1; (2)两枚骰子的点数和为奇数; (3)两枚骰子的点数和大于9; (4)第二枚骰子的点数整除第一枚骰子的点数. 答案: 1.解:可利用列表法列举出所有可能出现的结果: 从中发现,这两张恰好能拼成原来的一幅画的概率为: 2.解:画树状图如下: (1)两张牌的牌面数字和等于1的概率是0. (2)两张牌的牌面数字和等于2的概率是 (3)两张牌的牌面数字和为4的概率最大. (4)两张牌的牌面数字和大于3的概率是 3.解:列表列出所有可能结果: 共有 36 种情况. (1)至少有一枚骰子的点数为1的有11种可能,则概率为 (2)两枚骰子的点数和为奇数的有18种可能,则概率为 (3)两枚骰子的点数和大于9的有6种可能,则概率为 (4)第二枚骰子的点数整除第一枚骰子的点数的有14种可能,则概率为 |
自主完成练习,然后集体交流评价. |
通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.
|
环节五 课堂小结 | 思维导图的形式呈现本节课的主要内容: |
学生尝试回顾本节课所讲的内容. | 通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识. |
环节六 布置作业 | 教科书第64页习题3.2 第2、4题. | 学生课后自主完成. | 通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整. |
初中数学北师大版九年级上册第五章 投影与视图2 视图第2课时教案: 这是一份初中数学北师大版九年级上册第五章 投影与视图2 视图第2课时教案,共7页。教案主要包含了学习目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
初中北师大版1 投影第2课时教学设计及反思: 这是一份初中北师大版1 投影第2课时教学设计及反思,共9页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
数学九年级上册1 成比例线段第2课时教案: 这是一份数学九年级上册1 成比例线段第2课时教案,共8页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。