初中数学北师大版九年级上册7 相似三角形的性质第1课时教学设计
展开第四章 图形的相似
4.7 相似三角形的性质
第1课时
一、教学目标
1.经历探索相似三角形中对应线段的比值与相似比的关系的过程,理解相似三角形的性质.
2.熟练掌握相似三角形的性质:对应高的比、对应角平分线的比、对应中线的比都等于相似比.
3.能利用相似三角形的性质解决一些实际问题.
4.通过探索相似三角形性质的过程,进一步体验由特殊到一般的归纳思想和方法,感悟转化的思想,积累数学活动经验.
二、教学重难点
重点:掌握相似三角形的性质:对应高的比、对应角平分线的比、对应中线的比都等于相似比.
难点:利用相似三角形的性质解决一些实际问题.
三、教学用具
电脑、多媒体、课件、教学用具等.
四、教学过程设计
教学环节 | 教师活动 | 学生活动 | 设计意图 |
环节一 创设情境 | 【复习回顾】 教师活动:引导学生回忆前面课程学习的内容,提问学生回答下面问题. 问题1:什么叫相似三角形? 预设:三角分别相等、三边成比例的两个三角形叫做相似三角形. 问题2:我们已经学习了哪些相似三角形的判定方法? 预设: 定义法:三角分别相等、三边成比例. 判定定理1:两角分别相等的两个三角形相似. 判定定理2:两边成比例且夹角相等的两个三角形相似. 判定定理3:三边成比例的两个三角形相似. 3.如果两个三角形是相似三角形,那么能得到什么关系? 两个三角形的对应角相等. 两个三角形的对应角相等. 问题3:进一步提出思考:相似三角形中其他的对应线段有什么关系呢? |
回忆相似三角形的定义及判定定理,并踊跃回答问题1、2、3.
|
通过回忆上一节内容的基础上,引出本节课内容,探索三角形相似的性质. |
环节二 探究新知 | 【合作探究】 在生活中,我们经常利用相似的知识解决建筑类问题. 如图,小王依据图纸上的△ABC,以1:2的比例建造了模型房梁△A'B'C',CD和C'D'分别是它们的立柱. (1)△ACD与△A'C'D'相似吗?为什么?如 果相似,指出它们的相似比. (2)如果CD=1.5cm,那么模型房的房梁立柱有多高? 预设:(1)△ACD∽△A'C'D',因为:∠A=∠A',∠ADC=∠A'D'C'=90°.相似比是1:2 (2)由CD:C'D'=1:2,得C'D'=2CD=3cm,即模型房的房梁立柱高3cm. 【想一想】 已知△ABC ∽△A'B'C',△ABC与△A'B'C'的相似比为k; (1)它们对应高的比是多少? (2)对应角平分线的比是多少? (3)对应中线的比呢?请证明你的结论. 教师活动:带领学生一起分析题目,梳理解题思路,然后让学生独立完成.每一个小题完成后,总结重要的性质. 分析:证明“相似三角形对应高的比、对应角平分线的比相等”的时候,要用到“两角分别相等的两个三角形相似”;证明“相似三角形对应中线的比等于相似比”的结论时,要用到“两边成比例且夹角相等的两个三角形相似. 预设:对应高、角平分线、中线的比都等于相似比. (1) 证明:分别过A'和A作△A'B'C'与△ABC的高A'D'和AD, ∴∠ADB =∠A'D'B' =90°. 又有∠B=∠B',∴ △ABD∽△A'B'D'. ∴ 类似的,我们可以得到其余两组对应边上的高的比也等于相似比. 结论:相似三角形对应高的比等于相似比. (2) 证明:分别作△A'B'C'与△ABC中∠B'A'C'和∠BAC的平分线A'D'和AD. ∵∠B'A'C'=∠BAC,∴ ∠B'A'D'=∠BAD. 又∵∠B=∠B',∴ △ABD∽△A'B'D'. ∴ 类似的,我们可以得到其余两组对应角平分线的比也等于相似比. 结论:相似三角形对应角平分线的比等于相似比. (3) 证明:分别作△A'B'C'与△ABC中B'C'和BC边的中线A'D'和AD. ∵B'C'=BC,∴B'D'=BD. 又∵∠B=∠B',AB=A'B', ∴ △ABD∽△A'B'D'. ∴ 类似的,我们可以得到其余两组对中线的比也等于相似比. 结论:相似三角形对应中线的比等于相似比. 【归纳】 相似三角形的性质 相似三角形的性质定理 相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比. 【议一议】 如图,已知△ABC ∽△A'B'C',△ABC 与△A'B'C'的相似比为k;点D、E在BC边上,点D'、E'在B'C'边上. (1)若则等于多少? 教师活动:提示通过△ABC ∽△A'B'C',找到角度对应相等的条件,证明△ABD∽△A'B'D',再通过相似比求出 预设: 证明:∵ △ABC∽△A′B′C′,则∠B'=∠B, ∠B'A'C'=∠BAC, 而 ∴∠B'A'D'=∠BAD,则有△ABD∽△A'B'D'. ∴ (2)若,则等于多少? 教师活动:提示通过△ABC ∽△A'B'C',找到边对应相等的条件,结合夹角相等,证明△ABE∽△A'B'E',再通过相似比求出 预设: 证明:∵ △ABC∽△A′B′C′,则∠B'=∠B, 而, ∴,即. ∴△ABE∽△A'B'E'. ∴. (3)你能提出哪些问题?与伙伴交流. 教师活动:提示问题(1)中,若将换成,结论还成立吗?若换成呢? 预设: 证明:∵ △ABC∽△A′B′C′,则∠B'=∠B, ∠B'A'C'=∠BAC, 而 ∴∠B'A'D'=∠BAD,则有△ABD∽△A'B'D'. ∴. 教师活动:提示问题(2)中,若将换成,结论还成立吗?若换成呢? 预设: 证明:∵ △ABC∽△A′B′C′,则∠B'=∠B, . 而, ∴,即. ∴△ABE∽△A'B'E'. ∴. 问题:通过前边的分析,你能得到什么结论呢? 预设: 总结:相似三角形对应线段的比等于相似比. |
思考并回答问题.
结合前面引入问题的解答过程和老师的分析,独立解答问题.
思考、解答并完成证明.
思考、解答并完成证明.
思考、解答并完成证明.
归纳总结相似三角形的性质.
思考并回答问题,可以小组讨论后进行解答证明.
思考并回答问题,可以小组讨论后进行解答证明.
发散思维,思考还可以提出哪些问题,若没有想法,可以根据老师的提示进行思考解决.
归纳总结. |
设置生活情境中的例子,让学生体会三角形相似可以解决实际问题,同时引导学生发现相似三角形的高对应成比例.
把问题由具体推广到一般,由研究三角形的高推广到研究三角形的角平分线、中线.
引导学生应用三角形相似的判定定理解决问题.
依据题目的证明总结相似三角形的性质,易于学生理解并记忆.
把上述相似三角形的性质定理推广到更一般情况:相似三角形对应线段的比等于相似比.推广的过程是由特殊到一般.
鼓励学生大胆提出问题,发展他们发现问题、提出问题的能力,对于有困难的学生,教师要进行适当引导.
帮助学生总结解题规律. |
环节三 应用新知 | 【典型例题】 教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程. 如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当时,求DE的长.如果 呢? 教师分析:由已知条件中两个垂直关系可证得SR∥BC,则可证得△ABC∽△ASR,从而得到两个三角形的相似比,再利用相似三角形的高的比等于相似比,求出AE的长,从而算出DE的长. 展示完整解题过程: 解:∵SR⊥AD,BC⊥AD,∴SR∥BC. ∴∠ASR=∠B,∠ARS=∠C. ∴△ASR∽△ABC (两角分别相等的两个三角形相似). ∴(相似三角形对应高的比等于相似比),即 当时,得 解得 当时,得 解得 |
明确例题的解法,尝试独立解答,并交流讨论. |
通过对典型例题的分析和解答,让学生体会应用相似三角形的性质解决问题时一定要注意先引导学生阅读、理解题意. |
环节四 巩固新知 | 教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解. 1.△ABC ∽△A'B'C' ,BD和B'D' 是它们的对应中线,已知,B'D' =4cm,则BD= cm. 2.△ABC ∽△A'B'C',AD和A'D'是它们的对应角平分线,已知AD=8cm,A'D'=3cm ,则△ABC与△A'B'C' 的对应高之比为 . 3.如图,AD是BC边的高,点I,H在BC边上,点G在AC上,点F在AB上, BC=60cm,AD=40cm,四边形FGHI是正方形,则 (1) △AFG与△ABC相似吗?为什么? (2)求正方形FGHI的边长. 答案: 1. 6 2.8∶3 3.解:(1)△AFG与△ABC相似. ∵四边形FGHI是正方形, ∴ FG∥BC. ∴ ∠AFG=∠B,∠AGF=∠C. ∴ △AFG∽△ABC. (2)∵ △AFG∽△ABC, ∴ 设正方形FGHI的边长为xcm,则 AE=(40-x)cm. ∴解得x=24. 所以正方形FGHI的边长为24cm. |
自主完成练习,然后集体交流评价. |
通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯. |
环节五 课堂小结 | 思维导图的形式呈现本节课的主要内容: | 学生尝试归纳总结本节所学内容及收获. | 回顾知识点形成知识体系,养成回顾梳理知识的习惯. |
环节六 布置作业 | 教科书第108页习题4.11第3、5题. | 学生课后自主完成. | 加深认识,深化提高. |
初中北师大版2 视图第1课时教学设计: 这是一份初中北师大版2 视图第1课时教学设计,共9页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
初中北师大版1 投影第2课时教学设计及反思: 这是一份初中北师大版1 投影第2课时教学设计及反思,共9页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
初中数学北师大版九年级上册第五章 投影与视图1 投影第1课时教案: 这是一份初中数学北师大版九年级上册第五章 投影与视图1 投影第1课时教案,共9页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。