2023年云南省昭通市正道中学春季学期八年级下册期末模拟考试数学 试题卷(一)
展开2023年春季学期八年级下册期末模拟考试
数学 试题卷(一)参考答案
(全卷三个大题,共24个小题,共6页;满分100分;考试用时120分钟)
注意事项:
- 本卷为试题卷。考生必须在答题卡上解题作答。答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效。
- 考试结束后,请将试题卷和答题卡一并交回。
一、选择题 (共12题,每题3分,共36分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 | D | C | A | B | A | D | C | A | D | C | D | C |
二、填空题 (共4题,每题2分,共8分)
13、
14、
15、336
16、
三、解答题(共6题,共46分)
17.(6分)
解:(1)
=
=
=;
(2)
=
=
=-6
18.(6分)
证明:∵AB∥DE,
∴∠A=∠D,
∵AF=DC,
∴AF+FC=DC+FC,即AC=DF,
在△ABC和△DEF中,
∴△ABC≌△DEF(SAS).
- (7分)
解:(1)20﹣2﹣2﹣5﹣4﹣1=6(人),
补全条形统计图如下:
(2)这20名学生“青年大学习时间”出现次数最多的数35分钟,共有6人,因此众数是35;
将这20名学生“青年大学习时间”从小到大排列处在中间位置的两个数的平均数为=35.5,因此中位数是35.5;
这20名学生“青年大学习时间”的平均数为=35.5;
故答案为:35,35.5,35.5;
(3)不能,理由:样本中位数是35.5,所以可以估计一半以上的学生六月份学习“青年大学习”的时间等于35.5分钟,小明六月份学习“青年大学习”的时间是35分钟,小于35.5,所以不能说明小明六月份学习“青年大学习”的时间比一半以上的人多.
20.(7分)
解:解:(1)∵A(1,4),B(﹣1,2),
则 ,
解得,
∴k=1,b=3;
(2)存在,
由(1)可得y1=x+3,令y1=0,则x=﹣3,
即C(﹣3,0),
令y1=y2,即x+3=﹣x+1,
解得x=﹣,yD=﹣+3=,
∴CO=3,S△BOC=×CD×|yB|=×3×2=3,
设CM=|a+3|,由S△CMD=S△BOC,
则S△CMD=×CM×|yD|=S△BOC=5,
即×|a+3|×||=5,
解得a=﹣9或a=3,
∴存在M(﹣9,0)或M(3,0)使得S△CMD=S△BOC.
21.(7分)
解:(1)证明:∵四边形ABCD为平行四边形,
∴AB∥CD.
∴∠BAF=∠F.
∵AF平分∠BAD,
∴∠BAF=∠DAF.
∴∠F=∠DAF.
∴AD=FD.
(2)解:∵∠ADE=∠CDE=30°,AD=FD,
∴DE⊥AF.
∵tan∠ADE=,
∴AE=2.
∴S平行四边形ABCD=2S△ADE=AE•DE=4.
22.(7分)
解:根据题意可得,
,
解得:,
答:的值为,的值为.
(2)解:设购进黄色玩偶只,则购进蓝色玩偶只,
∵投入的资金不少于元又不多于元,
∴,
解得:,
∵,
∴当时,最大,最大利润为元.
23.(8分)
解:(1)证明:∵四边形ABCD是平行四边形,
∴,,
∴,,
在和中,
,
∴,
∴,
∴四边形AFCE是平行四边形.
∵,
∴四边形AFCE是菱形.
(2)解:∵,四边形ABCD是平行四边形,
∴四边形ABCD是矩形.
∴,
在中,,
由(1)知,四边形AFCE是菱形,
设,则,
在Rt△ABF中,
,即,,
解得:.
∴四边形AFCE的周长为:.
24.(8分)
解:(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,
DE=AB=8cm,AD=BE=12cm,
在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,
∴EC==6cm,
∴BC=BE+EC=18cm.
(2)∵AD∥BC,即PD∥CQ,
∴当PD=CQ时,四边形PQCD为平行四边形,
即12-2t=3t,
解得t=秒,
故当t=秒时四边形PQCD为平行四边形;
(3)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,
当PQ=CD时,四边形PQCD为等腰梯形.
过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,EF=PD=12-2t,PF=DE.
在Rt△PQF和Rt△CDE中,
,
∴Rt△PQF≌Rt△CDE(HL),
∴QF=CE,
∴QC-PD=QC-EF=QF+EC=2CE,
即3t-(12-2t)=12,
解得:t=,
即当t=时,四边形PQCD为等腰梯形;
(4)△DQC是等腰三角形时,分三种情况讨论:
①当QC=DC时,即3t=10,
∴t=;
②当DQ=DC时,
∴t=4;
③当QD=QC时,如图,
∵DQ=QC=3t,QE=3t-EC=3t-6,DE=8,
∴(3t)2=(3t-6)2+82
∴t=.
故存在t,使得△DQC是等腰三角形,此时t的值为秒或4秒或秒.
云南省昭通市正道中学2023年春季学期九年级上册数学9月份月考模拟考试: 这是一份云南省昭通市正道中学2023年春季学期九年级上册数学9月份月考模拟考试,文件包含2023年春季学期九年级上册9月份月考模拟考试docx、2023年春季学期九年级上册9月份月考模拟考试参考答案与解析docx等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
2023年云南省昭通市春季学期正道中学初中学业水平阶段性监测七年级数学: 这是一份2023年云南省昭通市春季学期正道中学初中学业水平阶段性监测七年级数学,文件包含2023年昭通市初中学业水平阶段性监测七年级数学试题卷pdf、七年级数学答案_Printpdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
2023年云南省昭通市正道中学春季学期八年级下册期末模拟考试数学 试题卷(二): 这是一份2023年云南省昭通市正道中学春季学期八年级下册期末模拟考试数学 试题卷(二),文件包含2023年春季学期八年级下册期末模拟考试数学试题卷二docx、2023年春季学期八年级下册期末模拟考试数学试题卷二参考答案docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。