所属成套资源:全国高考数学知识点真题模拟题全面总复习
- 高中数学常用解题方法:六、参数法 其他 0 次下载
- 高中数学常用解题方法:九、分离变量法 其他 0 次下载
- 高中数学常用解题方法:八、构造法 其他 1 次下载
- 专题28 知识点 不等式选讲 试卷 0 次下载
- 专题28 押题卷 不等式选讲 试卷 0 次下载
高中数学常用解题方法:二、换元法
展开
二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+的值域时,易发现x∈[0,1],设x=sinα ,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,]。一、典例分析例1. 实数x、y满足4x-5xy+4y=5 ( ①式) ,设S=x+y,求+的值。【分析】 由S=x+y联想到cosα+sinα=1,于是进行三角换元,设代入①式求S和S的值。此种解法后面求S最大值和最小值,还可由sin2α=的有界性而求,即解不等式:||≤1。这种方法是求函数值域时经常用到的“有界法”。【另解】 由S=x+y,设x=+t,y=-t,t∈[-,], 则xy=±代入①式得:4S±5=5, 移项平方整理得 100t+39S-160S+100=0 。∴ 39S-160S+100≤0 解得:≤S≤∴ +=+==【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S=x+y与三角公式cosα+sinα=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。第二种解法属于“均值换元法”,主要是由等式S=x+y而按照均值换元的思路,设x=+t、y=-t,减少了元的个数,问题且容易求解。另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法。和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x、y时,可以设x=a+b,y=a-b,这称为“和差换元法”,换元后有可能简化代数式。本题设x=a+b,y=a-b,代入①式整理得3a+13b=5 ,求得a∈[0,],所以S=(a-b)+(a+b)=2(a+b)=+a∈[,],再求+的值。 例2. △ABC的三个内角A、B、C满足:A+C=2B,+=-,求cos的值。(96年全国理)【分析】 由已知“A+C=2B”和“三角形内角和等于180°”的性质,可得 ;由“A+C=120°”进行均值换元,则设 ,再代入可求cosα即cos。【解】由△ABC中已知A+C=2B,可得 ,由A+C=120°,设,代入已知等式得:
解得:cosα=, 即:cos=。【另解】由A+C=2B,得A+C=120°,B=60°。所以+=-=-2,设=-+m,=--m ,所以cosA=,cosC=,两式分别相加、相减得:cosA+cosC=2coscos=cos=,cosA-cosC=-2sinsin=-sin=,即:sin=-,=-,代入sin+cos=1整理得:3m-16m-12=0,解出m=6,代入cos==。【注】 本题两种解法由“A+C=120°”、“+=-2”分别进行均值换元,随后结合三角2coscos=-[cos(A+C)+cos(A-C),即cos=-cos(A-C)=-(2cos-1),整理得:4cos+2cos-3=0,解得:cos=例3. 设a>0,求f(x)=2a(sinx+cosx)-sinx·cosx-2a的最大值和最小【解】 设sinx+cosx=t,则t∈[-,],由(sinx+cosx)=1+2sinx·cosx得:sinx·cosx=∴ f(x)=g(t)=-(t-2a)+ (a>0),t∈[-,],t=-时,取最小值:-2a-2a-当2a≥时,t=,取最大值:-2a+2a- ;当0<2a≤时,t=2a,取最大值: 。 ∴ f(x)的最小值为-2a-2a-,最大值为。【注】 此题属于局部换元法,设sinx+cosx=t后,抓住sinx+cosx与sinx·cosx的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。换元过程中一定要注意新的参数的范围(t∈[-,])与sinx+cosx对应,否则将会出错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。一般地,在遇到题目已知和未知中含有sinx与cosx的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。例4. 设对所于有实数x,不等式xlog+2x log+log>0恒成立,求a的取值范围。(87年全国理)【分析】不等式中log、 log、log三项有何联系?进行对数式的有关变形后不难发现,再实施换元法。,解得 ∴ t<0即log<00<<1,解得0<a<1。【注】应用局部换元法,起到了化繁为简、化难为易的作用。为什么会想到换元及如何设元,关键是发现已知不等式中log、 log、log三项之间的联系。在解决不等式恒成立问题时,使用了“判别式法”。另外,本题还要求对数运算十分熟练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。例5. 已知=,且+= (②式),求的值。【解】 设==k,则sinθ=kx,cosθ=ky,且sinθ+cosθ=k(x+y)=1,代入②式得: +== 即:+=设=t,则t+= , 解得:t=3或 ∴=±或± 二、巩固训练1.y=sinx·cosx+sinx+cosx的最大值是_________。2.设f(x+1)=log(4-x) (a>1),则f(x)的值域是_______________。3.已知数列{a}中,a=-1,a·a=a-a,则数列通项a=___________。4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。5.方程=3的解是_______________。6.不等式log(2-1) ·log(2-2)〈2的解集是_______________。【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+;5小题:设3=y,则3y+2y-1=0,解得y=,所以x=-1;6小题:设log(2-1)=y,则y(y+1)<2,解得-2<y<1,所以x∈(log,log3)。