2023年人教版数学九年级上册《24.3 正多边形和圆》同步精炼(含答案) 试卷
展开2023年人教版数学九年级上册
《24.3 正多边形和圆》同步精炼
一 、选择题
1.若一个正多边形的中心角等于其内角,则这个正多边形的边数为( )
A.3 B.4 C.5 D.6
2.若正六边形的半径为4,则它的边长等于( )
A.4 B.2 C.2 D.4
3.如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )
A.4 B.5 C.6 D.7
4.如果一个四边形的外接圆与内切圆是同心圆,那么这个四边形一定是( )
A.矩形 B.菱形 C.正方形 D.不能确定
5.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )
A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)
6.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )
A. B. C. D.
7.正三角形内切圆半径r与外接圆半径R之间的关系为( )
A.4R=5r B.3R=4r C.2R=3r D.R=2r
8.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是( )
A.60° B.45° C.30° D.22.5°
9.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为( )
A.正十二边形 B.正六边形 C.正四边形 D.正三角形
10.如图,若正方形的外接圆半径为2,则其内切圆半径为( )
A. B.2 C. D.1
二 、填空题
11.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .
12.如图,在正方形ABCDE中,以BC为一边,在形内作等边△BCF,连结AF.则∠AFB大小是 .
13.如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为 .
14.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是 .
15.如图,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ= .
16.已知AB、AC分别是同一个圆的内接正方形和内接正六边形的边,那么∠BAC的度数是 度.
三 、解答题
17.如图所示,已知△ABC是⊙O的内接等腰三角形,顶角∠BAC=36°,弦BD,CE分别平分∠ABC,∠ACB.求证:五边形AEBCD是正五边形.
18.如图,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为48 ,试求正六边形的周长.
19.如图①②③④,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEFG…的边AB,BC上的点,且BM=CN,连接OM,ON.
(1)求图①中∠MON的度数;
(2)图②中,∠MON的度数是________,图③中∠MON的度数是________;
(3)试探究∠MON的度数与正n边形的边数n的关系(直接写出答案).
20.如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.
(1)求∠AED的度数.
(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.
答案
1.B.
2.A
3.B
4.C.
5.C;
6.A
7.D
8.C.
9.B.
10.A.
11.答案为:5.
12.答案为:66°.
13.答案为:8.
14.答案为:8+8.
15.答案为:72°.
16.答案为:15或105.
17.证明:∵△ABC是等腰三角形,且∠BAC=36°,
∴∠ABC=∠ACB=72°.
又∵BD平分∠ABC,CE平分∠ACB,
∴∠ABD=∠CBD=∠BCE=∠ACE=36°,
即∠BAC=∠ABD=∠CBD=∠BCE=∠ACE,
∴====,
∴A,E,B,C,D是⊙O的五等分点,
∴五边形AEBCD是正五边形.
18.解:如图,连接OA,作OH⊥AC于点H,则∠OAH=30°.
在Rt△OAH中,设OA=R,则OH=R,
由勾股定理可得AH=== R.
而△ACE的面积是△OAH面积的6倍,
即6×× R×R=48 ,解得R=8,
即正六边形的边长为8,所以正六边形的周长为48.
19.解:(1)如图,连接OB,OC.
∵正三角形ABC内接于⊙O,
∴∠OBM=∠OCN=30°,∠BOC=120°.
又∵BM=CN,OB=OC,
∴△OBM≌△OCN,
∴∠BOM=∠CON,
∴∠MON=∠BOC=120°.
(2)90°,72°
(3)∠MON=.
20.解:(1)如图1中,连接OA、OD.
∵四边形ABCD是正方形,
∴∠AOD=90°,
∴∠AED=∠AOD=45°.
(2)如图2中,连接CF,CE,CA,BD,作DH⊥AE于H.
∵BF∥DE,AB∥CD,
∴∠BDE=∠DBF,∠BDC=∠ABD,
∴∠ABF=∠CDE,
∵∠CFA=∠AEC=90°,
∴∠DEC=∠AFB=135°,
∵CD=AB,
∴△CDE≌△ABF,
∴AF=CE=1,
∴AC==,
∴AD=AC=,
∵∠DHE=90°,
∴∠HDE=∠HED=45°,
∴DH=HE,设DH=EH=x,
在Rt△ADH中,∵AD2=AH2+DH2,
∴=(4﹣x)2+x2,解得x=或(舍弃),
∴DE=DH=