人教版九年级上册25.3 用频率估计概率优秀巩固练习
展开2023年人教版数学九年级上册
《25.3 用频率估计概率》同步精炼
一 、选择题
1.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )
A.12个 B.14个 C.18个 D.28个
2.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( )
A.12 B.9 C.4 D.3
3.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
4.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
5.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( )
A.甲组 B.乙组 C.丙组 D.丁组
6.市蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为( )
A.0.95 B.0.9 C.0.85 D.0.8
7.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).
A.10粒 B.160粒 C.450粒 D.500粒
8.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
9.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )
A.60个 B.50个 C.40个 D.30个
10.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:
请估算口袋中白球约是( )只.
A.8 B.9 C.12 D.13
二 、填空题
11.某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是 kg.
12.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是 个.
13.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:
则这个厂生产的瓷砖是合格品的概率估计值是 .(精确到0.01)
14.某射手在相同条件下进行射击训练,结果如下:
该射手击中靶心的概率的估计值是 (精确到0.01).
15.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的频率稳定在0.2,则袋中约有绿球 个.
16.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:
①若进行大量摸球实验,摸出白球的频率稳定于30%;
②若从布袋中任意摸出一个球,该球是黑球的概率最大;
③若再摸球100次,必有20次摸出的是红球.
其中说法正确的是 .
三 、解答题
17.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:
(1)完成上表;
(2)频率随着实验次数的增加,稳定于什么值左右?
(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?
(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?
18.小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.
(1)她们在一次试验中共掷骰子60次,试验的结果如下:
①填空:此次试验中“5点朝上”的频率为________;
②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?
(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图法加以说明,并求出其概率.
19.儿童节期间,某公园游乐场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸1个球,摸到1个红球就得到1个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.
(1)求参加此次活动得到玩具的频率;
(2)请你估计袋中白球的数量接近多少.
20.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如表所示:
(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?
(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.
21.在一个不透明的盒子里装着只有颜色不同的黑、白两种球共30个,小鲍做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.如图所示为“摸到白色球”的概率折线统计图.
(1)当n很大时,摸到白球的频率将会接近 (精确到0.01),估计盒子里白球有 个,假如摸一次,摸到白球的概率为 .
(2)如果要使摸到白球的概率为34,需要往盒子里再放入多少个白球?
22.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(1)计算并完成表格:(精确到0.01)
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 79 | 121 | 162 | 392 | 653 | 794 |
落在“铅笔”的频率 |
|
|
| 0.78 | 0.82 | 0.79 |
(2)请估计,当n很大时,频率将会接近 . (精确到0.1)
(3)假如你去转动该转盘一次,你获得铅笔的概率约是 . (精确到0.1)
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)
答案
1.A.
2.A.
3.B.
4.D
5.D
6.B
7.C
8.D
9.C
10.C
11.答案为:560.
12.答案为:15.
13.答案为:0.95.
14.答案为:0.90.
15.答案为:3
16.答案为:①②.
17.解:(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31;
(2)0.31;
(3)0.31;
(4)0.3
18.解:(1)①∵试验中“5点朝上”的次数为20,总次数为60,
∴此次试验中“5点朝上”的频率为=.②小红的说法不正确.
理由:∵利用频率估计概率的试验次数必须比较多,重复试验,频率才会慢慢接近概率.而她们的试验次数太少,没有代表性,
∴小红的说法不正确.
(2)列表如下:
小红和小颖 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
3 | 4 | 5 | 6 | 7 | 8 | 9 |
4 | 5 | 6 | 7 | 8 | 9 | 10 |
5 | 6 | 7 | 8 | 9 | 10 | 11 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
由表格可以看出,共有36种等可能的结果,其中点数之和为7的结果数最多,有6种,
∴两枚骰子朝上的点数之和为7时的概率最大,为=.
19.解:(1)参加此次活动得到玩具的频率为=0.2.
(2)设袋中共有m个球,则P(摸到1个球是红球)=,∴=0.2,解得m=40,
经检验,m=40是原方程的解,且符合题意.
∴袋中白球的数量接近40-8=32(个).
20.解:(1)∵==63,
∴s甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;
∵==63,
∴s乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,
∵s乙2<s甲2,
∴乙种小麦的株高长势比较整齐;
(2)列表如下:
| 63 | 66 | 63 | 61 | 64 | 61 |
63 | 63、63 | 66、63 | 63、63 | 61、63 | 64、63 | 61、63 |
65 | 63、65 | 66、65 | 63、65 | 61、65 | 64、65 | 61、65 |
60 | 63、60 | 66、60 | 63、60 | 61、60 | 64、60 | 61、60 |
63 | 63、63 | 66、63 | 63、63 | 61、63 | 64、63 | 61、63 |
64 | 63、64 | 66、64 | 63、64 | 61、64 | 64、64 | 61、64 |
63 | 63、63 | 66、63 | 63、63 | 61、63 | 64、63 | 61、63 |
由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,
∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为.
21.解:(1)0.50,15,
(2)设需要往盒子里再放入x个白球.
根据题意得=,解得x=30.
∴需要往盒子里再放入30个白球.
22.解:(1)如下表:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 79 | 121 | 162 | 392 | 653 | 794 |
落在“铅笔”的频率 | 0.8 | 0.8 | 0.8 | 0.78 | 0.82 | 0.79 |
(2)当n很大时,频率将会接近(79+121+162+392+653+794)÷=0.8,
故答案为:0.8;
(3)获得铅笔的概率约是0.8,
故答案为:0.8;
(4)扇形的圆心角约是0.8×360°=288度.
初中数学人教版九年级上册25.3 用频率估计概率优秀课后测评: 这是一份初中数学人教版九年级上册25.3 用频率估计概率优秀课后测评,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学人教版第二十五章 概率初步25.3 用频率估计概率优秀练习题: 这是一份数学人教版第二十五章 概率初步25.3 用频率估计概率优秀练习题,文件包含专题253用频率估计概率讲练-2022-2023学年九年级上册同步讲练解析版人教版docx、专题253用频率估计概率讲练-2022-2023学年九年级上册同步讲练原卷版人教版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
数学九年级上册第二十五章 概率初步25.3 用频率估计概率精品巩固练习: 这是一份数学九年级上册第二十五章 概率初步25.3 用频率估计概率精品巩固练习,文件包含专题253用频率估计概率测试卷-2022-2023学年九年级上册同步讲练解析版人教版docx、专题253用频率估计概率测试卷-2022-2023学年九年级上册同步讲练原卷版人教版docx、专题253用频率估计概率测试卷-2022-2023学年九年级上册同步讲练答题卡人教版docx等3份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。