终身会员
搜索
    上传资料 赚现金
    2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析)
    立即下载
    加入资料篮
    2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析)01
    2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析)02
    2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析)

    展开
    这是一份2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析),共24页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷
    一、选择题(每题3分,共24分)
    1.下列运算正确的是(  )
    A.a2+a2=a4 B.a3•a4=a12 C.(a3)4=a12 D.(ab)2=ab2
    2.把0.00000156用科学记数法表示为(  )
    A.156×108 B.15.6×10﹣7 C.1.56×10﹣5 D.1.56×10﹣6
    3.下列说法正确的是(  )
    A.相等的角是对顶角
    B.在同一平面内,平行于同一直线的两条直线互相平行
    C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离
    D.两条直线被第三条直线所截,同位角相等
    4.如图,在下列给出的条件中,不能判定AC∥DE的是(  )

    A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°
    5.若一个三角形三个内角度数的比为2:3:5,那么这个三角形是(  )
    A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形
    6.若(﹣2x+a)(x﹣1)的结果中不含x的一次项,则a的值为(  )
    A.1 B.﹣1 C.2 D.﹣2
    7.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作能验证的等式是(  )

    A.(a﹣b)2=a2﹣2ab+b2 B.(a+b)2=a2+2ab+b2
    C.a2﹣b2=(a+b)(a﹣b) D.a2+ab=a(a+b)
    8.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(  )

    A. B.
    C. D.
    二、填空题(每题3分,共24分)
    9.已知2x=8,4y=1,那么2x+2y的值是    .
    10.若x2+(m﹣1)x+16是完全平方式,则m的值是    .
    11.一个角的补角是它的余角的4倍,则这个角余角的度数是    .
    12.如图,AD是△ABC的中线,M是AC边上的中点,连接DM,若△ABC的面积为12cm2,则△ADM的面积为    cm2.

    13.如图,直线AB∥CD,点E,F分别在直线AB和直线CD上,点P在两条平行线之间,∠AEP和∠CFP的角平分线交于点H,已知∠P=78°,则∠H的度数为    .

    14.如图,某品牌自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.
    (1)观察图形,填写如表;

    链条节数/x(节)
    2
    3
    4
    5

    链条长度/y(cm)
    4.2
    5.9
    7.6
       

    (2)如果一辆自行车的链条(安装以后)共由60节链条组成,那么链条的总长度是    cm.
    15.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=10,两正方形的面积和S1+S2=52,则图中阴影部分面积是    .

    16.A骑摩托车从甲地去乙地,B开汽车从乙地去甲地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两地间的距离为s(km)与甲行驶的时间为t(h)之间的关系如图所示.
    (1)甲、乙两地之间的路程为    千米;
    (2)甲出发    小时后甲、乙两地相距80千米.

    三.解答题(共72分)
    17.作图题.
    用圆规,直尺作图,不写作法,但要保留作图痕迹.
    已知:点C为线段AB外一点,求作直线CD,使CD∥AB.

    18.(20分)计算:
    (1)﹣14+(﹣2)3+(π﹣3.14)0+(﹣)﹣2;
    (2)(a2b)•(﹣2ab2)2÷(﹣0.5a4b5);
    (3)用乘法公式计算:20162﹣2018×2014.
    (4)(3x+y﹣2)(3x﹣y+2);
    (5)(4ab3﹣a2b﹣ab)÷(ab);
    19.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=,y=3.
    20.已知:如图,△ABC中,AC⊥BC,若D、E在AB边上,点F在AC边上,DG⊥BC于点G,
    ∠1=∠2,求证:EF∥CD.将下列推理过程补充完整:
    证明:∵DG⊥BC,AC⊥BC,(已知),
    ∴∠DGB=∠ACB=90°(    ).
    ∴DG∥AC(    ).
    ∴∠2=    (    ).
    ∵∠1=∠2,
    ∴∠1=    (    ).
    ∴EF∥CD(    ).

    21.某经销商销售了一种水果,进价是25元/千克,根据以往销售经验,每天的售价与销售量之间有如下关系:
    每千克售价x(元)

    38
    37
    36
    35

    25
    每天销量
    y(千克)

    50
    52
    54
    56

    76
    (1)从表格可以看出售价每下调1元销售量就增加    千克,每上涨1元销售量就减少    千克,直接写出每天销量y(千克)与每千克售价x(元)的函数关系式.
    (2)求出当售价从38元/千克调整到44元/千克时,求这一天的销售量是多少千克?利润多少元?
    22.如图,已知∠1=∠BDC,∠2+∠3=180°.
    (1)问AD与CE平行吗?如果平行请说明理由.
    (2)若CE⊥AE于E,DA平分∠BDC,∠FAB=68°,求∠1的度数.

    23.某数学兴趣小组在一组课题学习活动中以“钟表上时针与分针的重合时刻”为课题展开了研究.
    【问题提出】如图①是某钟表,图②是该钟表的简化平面示意图,设时针、分针所在直线在同一平面内,直线l表示钟表的数轴线.在1:00~1:15之间求时针与分针的重合时刻.
    【问题探究】设钟表中心为O,表示“12”的点为A,表示“1”的点为B,表示“3”的点为C,表示“6”的点为D,下面是小颖同学的研究过程:
    解题思路:建立函数关系的方法求解.
    (1)设自变量x和因变量y:设1:00后再经过xmin(0≤x≤15),时针、分针分别与OA所成夹角度数为y1°,y2°,直接写出y1,y2关于x的关系式.
    (2)求解:
    【问题解决】请按照小颖的思路解答此问题;
    【问题拓展】求该钟表在1:15~1:30之间,时针与分针所在直线互相垂直的时刻.

    24.已知直线MN∥PQ,点A在直线MN上,点B,C为平面内两点,AC⊥BC于点C.

    (1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是    ;
    (2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B作BF∥MN请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;
    (3)请从下面A,B两题中任选一题作答.A.如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时直接写出∠ABC的度数;B.如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D,作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN时,直接写出∠ABC的度数.


    参考答案
    一、选择题(每题3分,共24分)
    1.下列运算正确的是(  )
    A.a2+a2=a4 B.a3•a4=a12 C.(a3)4=a12 D.(ab)2=ab2
    【分析】根据合并同类项,同底数幂的乘法,幂的乘方与积的乘方运算法则求解即可.
    解:a2+a2=2a2,
    故A不符合题意;
    a3•a4=a7,
    故B不符合题意;
    (a3)4=a12,
    故C符合题意;
    (ab)2=a2b2,
    故D不符合题意,
    故选:C.
    【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握这些知识是解题的关键.
    2.把0.00000156用科学记数法表示为(  )
    A.156×108 B.15.6×10﹣7 C.1.56×10﹣5 D.1.56×10﹣6
    【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    解:0.00000156=1.56×10﹣6,
    故选:D.
    【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    3.下列说法正确的是(  )
    A.相等的角是对顶角
    B.在同一平面内,平行于同一直线的两条直线互相平行
    C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离
    D.两条直线被第三条直线所截,同位角相等
    【分析】根据对顶角性质、平行线的判定与性质判断求解即可.
    解:相等的角不一定是对顶角,故A错误,不符合题意;
    在同一平面内,不相交的两条直线必平行,故B正确,符合题意;
    从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故C错误,不符合题意;
    两条平行直线被第三条直线所截,同位角相等,故D错误,不符合题意;
    故选:B.
    【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.
    4.如图,在下列给出的条件中,不能判定AC∥DE的是(  )

    A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°
    【分析】根据平行线的判定,逐项进行判断即可.
    解:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,故A可以;
    当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故B不可以;
    当∠3=∠4时,可知是DE和AC被AB所截得到的内错角,可得DE∥AC,故C可以;
    当∠2+∠A=180°时,是一对同旁内角,可得DE∥AC;故D可以;
    故选:B.
    【点评】本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.
    5.若一个三角形三个内角度数的比为2:3:5,那么这个三角形是(  )
    A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形
    【分析】根据三角形内角和等于180°求出最大内角的度数,再得出选项即可.
    解:∵三角形三个内角度数的比为2:3:5,
    ∴最大内角的度数是180=90°,
    ∴此三角形是直角三角形,
    故选:A.
    【点评】本题考查了三角形内角和定理,能熟记三角形内角和定理是解此题的关键,注意:三角形内角和等于180°.
    6.若(﹣2x+a)(x﹣1)的结果中不含x的一次项,则a的值为(  )
    A.1 B.﹣1 C.2 D.﹣2
    【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.
    解:原式=﹣2x2+(a+2)x﹣a,
    ∴a+2=0,
    ∴a=﹣2,
    故选:D.
    【点评】本题考查多项式乘多项式,解题的关键是熟练运用多项式乘多项式运算法则,本题属于基础题型.
    7.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作能验证的等式是(  )

    A.(a﹣b)2=a2﹣2ab+b2 B.(a+b)2=a2+2ab+b2
    C.a2﹣b2=(a+b)(a﹣b) D.a2+ab=a(a+b)
    【分析】分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的矩形的面积,根据剩余部分的面积相等即可得出算式,即可选出选项
    解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2﹣b2,
    图2拼成的是长为a+b,宽为a﹣b的矩形,因此面积为(a+b)(a﹣b),
    ∴根据剩余部分的面积相等得:a2﹣b2=(a+b)(a﹣b),
    故选:C.
    【点评】本题考查了平方差公式的运用,解此题的关键是用算式表示图形的面积,用的数学思想是转化思想,即把实际问题转化成用数学式子表示出来.
    8.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(  )

    A. B.
    C. D.
    【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.
    解:观察s关于t的函数图象,发现:
    在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,
    ∴可以大致描述蕊蕊妈妈行走的路线是B.
    故选:B.
    【点评】本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.
    二、填空题(每题3分,共24分)
    9.已知2x=8,4y=1,那么2x+2y的值是  8 .
    【分析】利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.
    解:∵2x=8,4y=1,
    2x+2y
    =2x×22y
    =2x×4y
    =8×1
    =8.
    故答案为:8.
    【点评】本题主要考查幂的乘方与积的乘方,同底数幂的乘法,熟练掌握以上知识是解题的关键.
    10.若x2+(m﹣1)x+16是完全平方式,则m的值是  9或﹣7 .
    【分析】根据完全平方公式即可求出答案.
    解:∵x2+(m﹣1)x+16=(x±4)2=x2±8x+16,
    ∴m﹣1=±8,
    ∴m=9或﹣7.
    故答案为:9或﹣7.
    【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
    11.一个角的补角是它的余角的4倍,则这个角余角的度数是  30° .
    【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.
    解:设这个角的度数是x,
    则180°﹣x=4(90°﹣x),
    解得x=60°.
    ∴这个角的余角=90°﹣60°=30.
    答:这个角的余角度数是30°.
    故答案为:30°.
    【点评】本题考查余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.
    12.如图,AD是△ABC的中线,M是AC边上的中点,连接DM,若△ABC的面积为12cm2,则△ADM的面积为  3 cm2.

    【分析】根据三角形中线平分三角形面积进行求解即可.
    解:∵AD是△ABC的中线,△ABC的面积为12cm2,
    ∴S△ACD=S△ABC=6cm2,
    ∵M是AC边上的中点,
    ∴S△ADM=S△ACD=3cm2.
    故答案为:3.
    【点评】本题主要考查了三角形的面积,熟知三角形中线平分三角形面积是解题的关键.
    13.如图,直线AB∥CD,点E,F分别在直线AB和直线CD上,点P在两条平行线之间,∠AEP和∠CFP的角平分线交于点H,已知∠P=78°,则∠H的度数为  141° .

    【分析】过点P作PQ∥AB,过点H作HG//AB.根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH
    解:过点P作PQ//AB,过点H作HG//AB.

    ∵AB//CD,
    ∴PQ//CD,HG//CD,
    ∴∠BEP=∠QPE,∠DFP=∠QPF,
    ∵∠EPF=∠QPE+∠QPF=78°,
    ∴∠BEP+∠DFP=78°,
    ∴∠AEP+∠CFP=360°﹣78=282°,
    ∵EH平分∠AEP,HF平分∠CFP,
    ∴∠AEH+∠CFH=282°÷2=141°.
    故答案为:141°.
    【点评】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.
    14.如图,某品牌自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.
    (1)观察图形,填写如表;

    链条节数/x(节)
    2
    3
    4
    5

    链条长度/y(cm)
    4.2
    5.9
    7.6
     9.3 

    (2)如果一辆自行车的链条(安装以后)共由60节链条组成,那么链条的总长度是  102.8 cm.
    【分析】(1)根据表格可知y与x的关系式,可知x=5时,y的值;
    (2)将x=60代入(1)中函数关系式即可.
    解:(1)根据题意,得y=2.5+(2.5﹣0.8)(x﹣1)=1.7x+0.8,
    当x=5时,y=1.7×5+0.8=9.3,
    故答案为:9.3;
    (2)当x=60时,y=1.7×60+0.8=102.8(cm),
    故答案为:102.8.
    【点评】本题考查了图形的变化规律,函数关系式,根据表格信息表示出函数关系式是解题的关键.
    15.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=10,两正方形的面积和S1+S2=52,则图中阴影部分面积是  12 .

    【分析】设两个正方形的边长分别为a、b,则a+b=10,由S1+S2=52可得a2+b2=52,根据(a+b)2=a2+b2+2ab代入求出ab的值即可.
    解:设AC=a,BC=b,则a+b=AB=10,
    ∵S1+S2=52,
    ∴a2+b2=52,
    ∵(a+b)2=a2+b2+2ab,
    ∴102=52+2ab,
    ∴ab=24,
    ∴阴影部分的面积为ab=12,
    故答案为:12.
    【点评】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确解答的前提.
    16.A骑摩托车从甲地去乙地,B开汽车从乙地去甲地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两地间的距离为s(km)与甲行驶的时间为t(h)之间的关系如图所示.
    (1)甲、乙两地之间的路程为  240 千米;
    (2)甲出发  或 小时后甲、乙两地相距80千米.

    【分析】(1)由图象直接可得甲,乙两地之间的路程为240千米;(2)求出A的速度为:240÷6=40(千米/小时),B的速度为:240÷2﹣40=80(千米/小时),设A出发t小时,A,B相距80千米,分两种情况列方程,可解得答案.
    解:(1)由图象可得,当x=0时,y=240,
    ∴甲,乙两地之间的路程为240千米;
    故答案为:240;
    (2)由图象可得:A的速度为:240÷6=40(千米/小时),B的速度为:240÷2﹣40=80(千米/小时),
    设A出发t小时,A,B相距80千米,由题意得:
    相遇前:80t+40t+80=240,
    解得t=,
    相遇后:80(t﹣2)+40(t﹣2)=80,
    解得t=,
    综上所述,A出发小时或小时后,A、B两人相距80千米.
    故答案为:或.
    【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和数形结合的思想解答.
    三.解答题(共72分)
    17.作图题.
    用圆规,直尺作图,不写作法,但要保留作图痕迹.
    已知:点C为线段AB外一点,求作直线CD,使CD∥AB.

    【分析】过点C作直线CE交AB于点E,作∠TCE=∠CDB即可.
    解:如图,直线CD即为所求.

    【点评】本题考查作图﹣复杂作图,平行线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    18.(20分)计算:
    (1)﹣14+(﹣2)3+(π﹣3.14)0+(﹣)﹣2;
    (2)(a2b)•(﹣2ab2)2÷(﹣0.5a4b5);
    (3)用乘法公式计算:20162﹣2018×2014.
    (4)(3x+y﹣2)(3x﹣y+2);
    (5)(4ab3﹣a2b﹣ab)÷(ab);
    【分析】(1)先算乘方,零指数幂,负整数指数幂,再算加减即可;
    (2)先算积的乘方,再算单项式乘单项式,最后算整式的除法即可;
    (3)利用平方差公式进行运算即可;
    (4)利用平方差公式及完全平方公式进行运算即可;
    (5)利用整式的除法的法则进行运算即可.
    解:(1)﹣14+(﹣2)3+(π﹣3.14)0+(﹣)﹣2
    =﹣1﹣8+1+9
    =1;
    (2)(a2b)•(﹣2ab2)2÷(﹣0.5a4b5)
    =(a2b)•(4a2b4)÷(﹣0.5a4b5)
    =a4b5÷(﹣0.5a4b5)
    =﹣2;
    (3)20162﹣2018×2014
    =20162﹣(2016+2)×(2016﹣2)
    =20162﹣(20162﹣4)
    =20162﹣20162+4
    =4;
    (4)(3x+y﹣2)(3x﹣y+2)
    =[3x+(y﹣2)][3x﹣(y﹣2)]
    =(3x)2﹣(y﹣2)2
    =9x2﹣(y2﹣4y+4)
    =9x2﹣y2+4y﹣4;
    (5)(4ab3﹣a2b﹣ab)÷(ab)
    =4ab3÷(ab)﹣a2b÷(ab)﹣ab÷(ab)
    =8b2﹣2a﹣1.
    【点评】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.
    19.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=,y=3.
    【分析】先利用完全平方公式和平方差公式计算,进一步合并,最后代入求得数值即可.
    解:原式=(4x2+4xy+y2﹣4x2+y2﹣6y)÷2y
    =(2y2+4xy﹣6y)÷2y
    =y+2x﹣3
    当x=,y=3时,
    原式=3+1﹣3=1.
    【点评】此题考查整式的化简求值,掌握计算公式和运算方法是解决问题的关键.
    20.已知:如图,△ABC中,AC⊥BC,若D、E在AB边上,点F在AC边上,DG⊥BC于点G,
    ∠1=∠2,求证:EF∥CD.将下列推理过程补充完整:
    证明:∵DG⊥BC,AC⊥BC,(已知),
    ∴∠DGB=∠ACB=90°(  垂直定义 ).
    ∴DG∥AC(  同位角相等,两直线平行 ).
    ∴∠2= ∠DCA  (  两直线平行,内错角相等 ).
    ∵∠1=∠2,
    ∴∠1= ∠DCA  (  等量代换 ).
    ∴EF∥CD(  同位角相等,两直线平行 ).

    【分析】首先证明∠2=∠DCA,然后根据∠1=∠2,可得∠DCA=∠1,再根据同位角相等,两直线平行可判定出EF∥DC.
    【解答】证明:∵DG⊥BC,AC⊥BC,(已知),
    ∴∠DGC=∠ABC=90° (垂直定义),
    ∴DG∥AC(同位角相等,两直线平行),
    ∴∠2=∠DCA(两直线平行,内错角相等),
    ∵∠1=∠2,
    ∴∠1=∠DCA(等量代换),
    ∴EF∥CD (同位角相等,两直线平行).
    故答案为:垂直定义;同位角相等,两直线平行;∠DCA;两直线平行,内错角相等;∠DCA;等量代换;同位角相等,两直线平行.
    【点评】本题主要考查了平行线的判定与性质定理,掌握平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系是解题的关键.
    21.某经销商销售了一种水果,进价是25元/千克,根据以往销售经验,每天的售价与销售量之间有如下关系:
    每千克售价x(元)

    38
    37
    36
    35

    25
    每天销量
    y(千克)

    50
    52
    54
    56

    76
    (1)从表格可以看出售价每下调1元销售量就增加  2 千克,每上涨1元销售量就减少  2 千克,直接写出每天销量y(千克)与每千克售价x(元)的函数关系式.
    (2)求出当售价从38元/千克调整到44元/千克时,求这一天的销售量是多少千克?利润多少元?
    【分析】(1)根据表格中的数据可得售价每下调1元销售量就增加2千克,每上涨1元销售量就增减少2千克,根据此关系可得当售价从38元/千克下调到x元/千克时,得出其销售量y,以此即可得到y与x的函数关系式;
    (2)将x=44代入(1)中求得的函数关系式中,求出这一天的销售量,再根据“利润=(售价﹣成本)×销售量”即可解答
    解:(1)从表格可以看出售价每下调1元销售量就增加2千克,每上涨1元销售量就增减少2千克,
    当售价从38元/千克下调到x元/千克时,y=50+2(38﹣x)=126﹣2x,
    ∴每天销量y(千克)与每千克售价x(元)的函数关系式为y=126﹣2x;
    故答案为:2,2;
    (2)当售价从38元/千克调整到44元/千克时,y=126﹣2×44=38,
    ∴这一天的销售量是38kg,
    ∵这种水果进价是25元/千克
    ∴利润为(44﹣25)×38=722(元).
    ∴这一天的销售量是38kg,利润722元.
    【点评】本题主要考查一次函数的应用,解题关键是从表格中得出售价每下调1元销售量就增加2千克,每上涨1元销售量就增减少2千克.
    22.如图,已知∠1=∠BDC,∠2+∠3=180°.
    (1)问AD与CE平行吗?如果平行请说明理由.
    (2)若CE⊥AE于E,DA平分∠BDC,∠FAB=68°,求∠1的度数.

    【分析】(1)利用已知可得AB∥CD,从而可得∠2=∠ADC,进而可得∠3+∠ADC=180°,然后利用同旁内角互补,两直线平行可得AD∥CE,即可解答;
    (2)根据垂直定义可得∠CEA=90°,再利用(1)的结论可得∠CEA=∠DAF=90°,从而可得∠2=22°,然后利用(1)的结论可得∠2=∠ADC=22°,再利用角平分线的定义可得∠CDF=2∠ADC=44°,即可解答.
    解:(1)AD∥CE,
    理由:∵∠1=∠BDC,
    ∴AB∥CD,
    ∴∠2=∠ADC,
    ∵∠2+∠3=180°,
    ∴∠3+∠ADC=180°,
    ∴AD∥CE;
    (2)∵CE⊥AE,
    ∴∠CEA=90°,
    ∵CE∥AD,
    ∴∠CEA=∠DAF=90°,
    ∵∠FAB=68°,
    ∴∠2=∠DAF﹣∠FAB=22°,
    ∴∠2=∠ADC=22°,
    ∵DA平分∠CDF,
    ∴∠CDF=2∠ADC=44°,
    ∴∠1=∠CDF=44°,
    ∴∠1的度数为44°.
    【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
    23.某数学兴趣小组在一组课题学习活动中以“钟表上时针与分针的重合时刻”为课题展开了研究.
    【问题提出】如图①是某钟表,图②是该钟表的简化平面示意图,设时针、分针所在直线在同一平面内,直线l表示钟表的数轴线.在1:00~1:15之间求时针与分针的重合时刻.
    【问题探究】设钟表中心为O,表示“12”的点为A,表示“1”的点为B,表示“3”的点为C,表示“6”的点为D,下面是小颖同学的研究过程:
    解题思路:建立函数关系的方法求解.
    (1)设自变量x和因变量y:设1:00后再经过xmin(0≤x≤15),时针、分针分别与OA所成夹角度数为y1°,y2°,直接写出y1,y2关于x的关系式.
    (2)求解:
    【问题解决】请按照小颖的思路解答此问题;
    【问题拓展】求该钟表在1:15~1:30之间,时针与分针所在直线互相垂直的时刻.

    【分析】(1)根据分针每分钟转6°,时针每分钟转0.5°,根据题意列函数关系式,
    (2)根据分针每分钟转6°,时针每分钟转0.5°,根据题意列方程求解,
    (3)根据分针每分钟转6°,时针每分钟转0.5°,根据题意列方程求解.
    解:(1)y1=30+x;y2=6x.
    (2)根据题意得:6x=30+x,解得x=.
    答:在1:00到1:15之间时针秘分针重合时刻为1点分钟.
    (3)根据题意得:6x=30+x+90,解得x=.
    答:在1:15到1:30之间时针与分针所在直线互相垂直的时刻为1点分钟.
    【点评】本题考查了函数的图象和钟面角,一元一次方程的应用,数形结合思想是解题的关键.
    24.已知直线MN∥PQ,点A在直线MN上,点B,C为平面内两点,AC⊥BC于点C.

    (1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是  ∠CAB+∠CDP=90° ;
    (2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B作BF∥MN请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;
    (3)请从下面A,B两题中任选一题作答.A.如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时直接写出∠ABC的度数;B.如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D,作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN时,直接写出∠ABC的度数.
    【分析】(1)利用平行线的性质即可得出结论;
    (2)利用平行线的性质和角度的计算即可得出结论;
    (3)A题需要作出辅助线BF∥MN,即可求解;B题利用平行线的性质,用∠ABC表示出∠BDP,然后放在△ABC和△ABE中求解即可.
    解:(1)∵AC⊥BC,
    ∴∠CAB+∠CBA=90°,
    ∵MN∥PQ,
    ∴∠CBA=∠CDP,
    ∴∠CAB+∠CDP=90°,
    故答案为:∠CAB+∠CDP=90°;
    (2)∠ABC=∠BDP,理由如下:
    ∵BF∥MN,MN∥PQ,
    ∴BF∥PQ,
    ∴∠NCB+∠CBF=180°,∠FBD=∠BDP,
    ∵AC⊥BC,
    ∴∠CBF=180°﹣90°=90°,
    ∴∠ABC+∠ABF=90°,
    ∵BD⊥AB,
    ∴∠ABF+∠DBF=90°,
    ∴∠ABC=∠FBD,
    ∴∠ABC=∠BDP,
    (3)选择A,
    如图,过点B作BF∥MN,

    设∠ABC=x,则:
    ∠AEB=∠EBF=2x,
    由(2)可得∠BDP=∠ABC=x,
    ∴∠DBF=x,
    ∠EBD=∠EBF+∠DBF=3x,
    ∵BE平分∠ABD,
    ∴∠ABD=6x,
    ∵AB⊥BD,
    ∴6x=90°,
    解得:x=15°,
    ∴∠ABC=15°;
    选择B,
    设∠ABC=x,
    ∵BA⊥AC,MN∥PQ,BC⊥PQ,
    ∴∠QDB+∠DBC=90°,
    ∵AB⊥BD,
    ∴∠ABC+∠DBC=90°,
    ∴∠ABC=∠QDB=x,
    ∴∠BDP=180°﹣x,
    ∵BE平分∠ABD,
    ∴∠ABE=∠DBE=45°,
    在△ABC中,∠CAB=90°﹣x,
    在△ABE中,
    ∠ABE=180°﹣∠ABE﹣∠CAB=180°﹣45°﹣(90°﹣x)=45°+x,
    ∠BEN=45°+x,
    ∵∠BDP=2∠BEN,
    ∴180°﹣x=2(45°+x),
    解得:x=30°,
    ∴∠ABC=30°.
    【点评】本题主要考查平行线的性质和角平分线的定义,本题的难点在于第三问A题中辅助线的做法.

    相关试卷

    2022-2023学年山东省青岛市市南区七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年山东省青岛市市南区七年级(下)期末数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年山东省青岛市市南区七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年山东省青岛市市南区七年级(下)期末数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年山东省青岛市市南区七年级(下)期末数学试卷: 这是一份2022-2023学年山东省青岛市市南区七年级(下)期末数学试卷,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map