人教版八年级上册12.2 三角形全等的判定习题
展开2023年人教版数学八年级上册
《12.2 三角形全等的判定》同步精炼
一 、选择题
1.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
3.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是( )
A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C
4.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是( )
A.SSS B.SAS C.ASA D.HL
5.如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离( )
A.AB B.AC C.BM D.CM
6.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长.判定△ABC≌△DEC的理由是( )
A.SSS B.ASA C.AAS D.SAS
7.如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数为( )
A.60° B.120° C.72° D.108°
8.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为( )
A.110° B.125° C.130° D.155°
9.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.
下列结论:
①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.
其中正确的结论是( )
A.①②③ B.③④ C.①②④ D.①②③④
二 、填空题
11.如图,已知AB=AD,要使△ABC≌△ADC,那么可以添加条件 .
12.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是 .
13.已知一条斜边和一条直角边,求作直角三角形,作图的依据是__________.
14.如图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是 (用字母表示).
15.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为 E,D,AD=25,DE=17,则 BE= .
16.如图,在△ABC中,AB=3,BC=8,则BC边上的中线AD的取值范围是 .
三 、解答题
17.如图,已知AB=AC,∠DAC=∠EAB,∠B=∠C.
求证:BD=CE.
18.如图,AB=AD,AC=AE,∠1=∠2.
求证:BC=DE.
19.如图,在△ABC中,∠ABC=∠ACB,过A作AD⊥AB交BC的延长线于点D,过点C作CE⊥AC,使AE=BD.求证:∠E=∠D.
20.某风景区改建中,需测量湖两岸游船码头A、B间的距离,于是工作人员在岸边A、B的垂线AF上取两点E、D,使ED=AE.再过D点作出AF的垂线OD,并在OD上找一点C,使B、E、C在同一直线上,这时测得CD长就是AB的距离.请说明理由.
21.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
求证:(1)AF=CG;
(2)CF=2DE.
22.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.
(1)求∠AOC的度数;
(2)求证:AC=AE+CD.
答案
1.C
2.D
3.B
4.B.
5.C
6.D
7.D.
8.C.
9.B
10.C.
11.答案为:DC=BC(或∠DAC=∠BAC或AC平分∠DAB等).
12.答案为:AE=AB.
13.答案为:HL定理.
14.答案为:SSS.
15.答案为:8.
16.答案为:1<AD<7.
17.证明:∵∠DAC=∠EAB,
∴∠DAC+∠BAC=∠EAB+∠BAC.
∴∠EAC=∠DAB.
在△EAC和△DAB中,
,
∴△DAB≌△EAC(ASA),
∴BD=CE.
18.证明:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC.
即:∠BAC=∠DAE.
在△ABC与又△ADE中,
,
∴△ABC≌△ADE.
∴BC=DE.
19.解:∵∠ABC=∠ACB,
∴AB=AC,
∵AD⊥AB,CE⊥AC,
∴∠BAD=∠ACE=90°,
由HL可证Rt△BAD≌Rt△ACE,
∴∠E=∠D
20.证明:∵AB⊥AD,CD⊥AD
∴∠A=∠CDE=90°
又∵ED=AE,∠AEB=∠CED
∴△ABE≌△CED(AAS)
所以AB=CD.
21.证明:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵CG平分∠ACB,
∴∠BCG=∠ACB=45°,
∴∠CAB=∠BCG,
在△ACF和△CBG中,
,
∴△ACF≌△CBG(ASA),
∴AF=CG.
(2)如图,延长CG交AB于点H.
∵AC=BC, CG平分∠ACB,
∴CH⊥AB,且点H是AB的中点,
又∵AD⊥AB,
∴CH∥AD,
∴∠D=∠CGE,
又∵点H是AB的中点,
∴点G是BD的中点,
∴DG=GB,
∵△ACF≌△CBG,
∴CF=BG,
∴CF=DG,
∵E为AC边的中点,
∴AE=CE,
在△AED和△CEG中,
,
∴△AED≌△CEG(AAS),
∴DE=GE,
∴DG=2DE,
又∵CF=DG,
∴CF=2DE.
22.解:如图,在AC上截取AF=AE,连接OF
∵AD平分∠BAC,
∴∠BAD=∠CAD,
在△AOE和△AOF中
∴△AOE≌△AOF(SAS),
∴∠AOE=∠AOF,
∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,
∴∠AOC=120°;
(2)∵∠AOC=120°,
∴∠AOE=60°,
∴∠AOF=∠COD=60°=∠COF,
在△COF和△COD中,
∴△COF≌△COD(ASA)
∴CF=CD,
∴AC=AF+CF=AE+CD.
初中数学人教版八年级上册12.2 三角形全等的判定巩固练习: 这是一份初中数学人教版八年级上册12.2 三角形全等的判定巩固练习,共5页。试卷主要包含了2三角形全等的判定 同步练习等内容,欢迎下载使用。
数学八年级上册第十二章 全等三角形12.2 三角形全等的判定习题: 这是一份数学八年级上册第十二章 全等三角形12.2 三角形全等的判定习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定课堂检测: 这是一份人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定课堂检测,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。