年终活动
搜索
    上传资料 赚现金

    2022-2023学年山东省泰安市高一上学期期末数学试题(解析版)

    立即下载
    加入资料篮
    2022-2023学年山东省泰安市高一上学期期末数学试题(解析版)第1页
    2022-2023学年山东省泰安市高一上学期期末数学试题(解析版)第2页
    2022-2023学年山东省泰安市高一上学期期末数学试题(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年山东省泰安市高一上学期期末数学试题(解析版)

    展开

    这是一份2022-2023学年山东省泰安市高一上学期期末数学试题(解析版),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年山东省泰安市高一上学期期末数学试题 一、单选题1.已知集合,则    A B C D【答案】A【解析】根据条件可得,然后可得答案.【详解】因为,所以所以故选:A2.在下列函数中,函数表示同一函数的(    A B C D【答案】C【分析】由题意,判断函数是否相等,需对比定义域和对应关系,先求定义域,再整理解析式,可得答案.【详解】由题意,函数,其定义域为,其解析式为对于A,函数,其定义域为,故A错误;对于B,函数,其定义域为,对应法则不同,故B错误;对于C,与题目中的函数一致,故C正确;对于D,函数,其定义域为,故D错误,故选:C.3.命题的否定为(    A BC D【答案】D【分析】利用全称命题的否定的概念求解即可.【详解】命题的否定为故选:D4.角为第一或第四象限角的充要条件是(    A B C D【答案】C【分析】根据角所在的象限,可判断出三角函数值的符号,从而可判断出选项.【详解】若角为第一象限角,则若角为第四象限角,则所以若角为第一或第四象限角,则,则,所以角为第一或第四象限角.故选:C.5.已知函数,则    A B C D【答案】B【分析】由分段函数解析式及指数运算求函数值即可.【详解】由题设,所以.故选:B.6.设,则下列结论成立的是(    A B C D【答案】B【解析】比较的大小关系,并比较三个数与的大小关系,由此可得出三个数的大小关系.【详解】,即,因此,.故选:B.7.人们通常以分贝(符号是)为单位来表示声音强度的等级,强度为的声音对应的等级为,喷气式飞机起飞时,声音约为,大货车鸣笛时,声音约为,则喷气式飞机起飞时的声音强度是大货车鸣笛时声音强度的(    )倍.A B C D1000【答案】C【解析】解出可得答案.【详解】可得可得所以喷气式飞机起飞时的声音强度是大货车鸣笛时声音强度的故选:C8.已知奇函数上是增函数,若,则的大小关系为A B C D【答案】C【详解】由题意:且:据此:结合函数的单调性有:.本题选择C选项.【解析】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式. 二、多选题9.若则下列命题正确的是(    A.若,则 B.若,则C.若,则 D.若,则【答案】BD【分析】利用不等式的性质及特例法判断ABC,利用指数函数的单调性判断D即可.【详解】选项A:当时,,故A错误;选项B:若,则,移项可得,故B正确;选项C:当时,满足,此时,故C错误;选项D:因为函数上单调递增,所以当时,,故D正确;故选:BD10.关于函数,下列命题正确的是(    A是以为最小正周期的周期函数B的表达式可改写为C的图象关于点对称D的图象关于直线对称【答案】BC【分析】利用余弦函数的图象和性质判断ACD,利用诱导公式判断B即可.【详解】的最小正周期A错误;B正确;因为,所以的图象关于点对称,C正确;因为,所以的图象不关于直线对称,D错误;故选:BC11.已知函数,则下列结论正确的是(    AB是偶函数C的值城为D,且恒成立【答案】ACD【分析】根据题意,结合函数的奇偶性以及单调性的定义,以及指数函数的性质,对选项逐一判断,即可得到结果.【详解】函数的定义域为,故A正确;因为,故B错误;由于,则,所以即函数的值城为,故C正确;由于在定义域上为增函数,故在定义域上为增函数,即有时,将式子中的换为可得当时,D正确.故选:ACD12.下列说法正确的是(    A.函数的最小值为2B.若,则最小值为4C.若对恒成立,则实数m的最大值为2D.若,则的最大值是【答案】BCD【分析】利用基本不等式逐项分析判断,注意基本不等式成立的条件.【详解】A:当时,则,当且仅当,即时等号成立;时,则,当且仅当,即时等号成立,综上所述:函数的值域为,无最小值,A错误;B:若,则当且仅当,即时等号成立,B正确;C:当,则,当且仅当,即时等号成立,若对恒成立,则,即实数m的最大值为2C正确;D,则,当且仅当,即时等号成立,,故的最大值是D正确.故选:BCD. 三、填空题13.已知幂函数经过点,则______【答案】##0.5【分析】将点代入函数解得,再计算得到答案.【详解】,故.故答案为:14.若,则_______【答案】【分析】先由求出,即可求出结果.【详解】因为所以所以所以故答案为:15.当时,使成立的x的取值范围为______【答案】【分析】根据正切函数的图象,进行求解即可.【详解】由正切函数的图象知,当时,即实数x的取值范围是故答案为【点睛】本题主要考查正切函数的应用,利用正切函数的性质结合函数的单调性是解决本题的关键.16.对于函数,设,若存在使得,则称互为友好函数”.已知函数互为友好函数,则实数的取值范围是________.【答案】【解析】求出函数的零点为,由题意可求得函数零点的取值范围是,由可得出,令,则实数的取值范围即为函数的值域,利用二次函数的基本性质求出为函数的值域,即为实数的取值范围.【详解】由于函数为增函数,函数为减函数,则函数为增函数,因为.由于互为友好函数,可得,解得所以,函数的零点的取值范围是可得,则实数的取值范围即为函数的值域.时,.因此,实数的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 四、解答题17.已知函数的部分图象如图所示.(1)求函数的单调递增区间;(2)求函数上的最值.【答案】(1)(2)最小值是1,最大值是2 【分析】1)根据图象,利用周期公式求得函数解析式,再根据整体思想求解函数的单调区间即可;2)根据整体思想,结合正弦函数的图象和性质求解即可.【详解】1)由函数图象可得,解得,所以所以解得所以的单调递增区间为2)当时,所以,所以所以当时,取得最小值,最小值是1时,取得最大值,最大值是218.已知,集合(1)的值;(2),求实数的取值范围.【答案】(1)2(2) 【分析】1)根据指数和对数的运算法则化简求解即可;2)先化简集合,在利用集合交集的概念求解即可.【详解】1)由题知2)由解得,所以因为,所以时,,解得时,,即,要使,解得,所以综上综实数的取值范围是19.已知(1)(2)若角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,求的值.【答案】(1)(2) 【分析】1)利用诱导公式和同角三角关系求解即可;2)根据三角函数的定义求解即可.【详解】1)因为所以所以.2)由正切函数的定义知又因为,所以,所以20.已知关于x的不等式(1)若不等式的解集为,求ab的值:(2),解不等式【答案】(1)(2)答案见解析. 【分析】1)由不等式的解集与一元二次方程根的关系求解;2)根据相应方程两根的大小分类讨论求解.【详解】1)原不等式可化为由题知,是方程的两根,由根与系数的关系得,解得2)原不等式可化为因为,所以原不等式化为,即时,解得;当,即时,解得,即时,解得综上所述,当时,不等式的解集为时,不等式的解集为;当时,不等式的解集为21.近年来,中美贸易摩擦不断,特别是美国对我国华为的限制,尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而,这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,华为为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本300万元,每生产x(千部)手机,需另投入成本万元,且.由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(1)求出2023年的利润(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本);(2)2023年产量为多少千部时,企业所获利润最大?最大利润是多少?【答案】(1)(2)2023年年产量为100千部时,企业获得最大利润,最大利润为9000万元 【分析】1)由利润=销售额-成本,讨论x的范围,得出函数关系式;2)利用二次函数和不等式分别得出函数的最值,即可得出最大利润.【详解】1时,时,所以.2)当时,,当时,时,当且仅当时等号成立,所以当时,所以当2023年年产量为100千部时,企业获得最大利润,最大利润为9000万元.22.已知函数(1)已知,函数是定义在R上的奇函数,当时,,求的解析式;(2)若函数有且只有一个零点,求a的值;(3),若对任意,函数上的最大值与最小值的差不超过1,求a的取值范围.【答案】(1)(2)(3) 【分析】1)由奇函数的定义求解;2)化简方程然后分类讨论得方程根的情况,注意检验;3)由定义确定函数的单调性,得函数最大值与最小值的差,由题意转化为一元二次不等式恒成立问题后求解.【详解】1)由题知,当.则,所以因为是奇函数,所以又因为所以2)令,整理得因为有且只有一个零点,所以方程有且只有一根或两相等根,时,,符合题意,时,只需所以,此时,符合题意综上,3)在上任取,且,则所以,所以上单调递减.所以函数上的最大值与最小值分别为所以,对任意成立.因为,所以函数的图象开口向上,对称轴所以函数上单调递增,所以当时,y有最小值,所以,解得所以a的取值范围为 

    相关试卷

    山东省泰安市2022-2023学年高二上学期期末数学试题(学生版+解析):

    这是一份山东省泰安市2022-2023学年高二上学期期末数学试题(学生版+解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    精品解析:山东省泰安市2022-2023学年高一下学期期末数学试题(解析版):

    这是一份精品解析:山东省泰安市2022-2023学年高一下学期期末数学试题(解析版),共22页。

    2022-2023学年山东省泰安市高一上学期期末数学试题含解析:

    这是一份2022-2023学年山东省泰安市高一上学期期末数学试题含解析,共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map