年终活动
搜索
    上传资料 赚现金

    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题

    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题第1页
    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题第2页
    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题

    展开

    这是一份广东省东莞市东华高级中学2022-2023学年高一下学期2月月考数学试题,共9页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。
    东华高级中学  东华松山湖高级中学20222023学年第二学期高一2月考数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 命题的否定是()A.  B. C.  D. 2. 的(  ).A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件3. 函数的零点所在的区间为()A. B. C. D. 4.若,向量与向量的夹角为150°,则向量在向量上的投影向量为(    A B C D5. ,则()A.  B. C.  D. 6. 要得到函数的图象,只需将函数的图象进行如下变换得到()A.向左平移个单位B. 向右平移个单位C. 向右平移个单位D. 向左平移个单位7.已知是方程的两根,且,则的值为(    A B C D8. 若定义上的函数满足:对任意的最大值和最小值分别为,则的值为()A. 2022B. 2018 C. 4036D. 4044二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在中,中点,且,则(    AB. CD10.已知函数,则(    A的最大值为B.直线图象的一条对称轴C在区间上单调递减D的图象关于点对称11. ,则下列关系式中一定成立的是(    A.  B. C. 是第一象限角) D. 12. 已知函数,若方程有四个不同的根,且,则下列结论正确的是()A.  B. C.  D. 三、填空题:本题共4小题,每小题5分,共20分.13.已知向量满足,则______14. 请写出一个函数,使它同时满足下列条件:(1的最小正周期是4;(2的最大值为2____________15. 是定义在R上的奇函数,当时,(为常数),则当时,_________.16. 木雕是我国古建筑雕刻中很重要一种艺术形式,传统木雕精致细腻、气韵生动、极富书卷气.如图是一扇环形木雕,可视为扇形OCD截去同心扇形OAB所得部分.已知,则该扇环形木雕的面积为________四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知集合(1)    求集合     (2)  ,求实数的取值范围. (本题满分12分)在平面直角坐标系中,是坐标原点,角的终边与单位圆的交点坐标为,射线绕点按逆时针方向旋转弧度后交单位圆于点,点的纵坐标关于的函数为.1求函数的解析式,并求的值;2,求的值. 19.(本题满分12分) 函数1)请用五点作图法画出函数上的图象(先列表,再画图)2)设,当试研究函数的零点的情况.  20.(本题满分12分)2020年我国面对前所未知,突如其来,来势汹汹的新冠肺炎疫情,中央出台了一系列助力复工复产好政策.城市快递行业运输能力迅速得到恢复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车时间间隔t(单位:分钟)满足:,平均每趟快递车辆的载件个数(单位:个)与发车时间间隔t近似地满足,其中1)若平均每趟快递车辆的载件个数不超过1600个,试求发车时间间隔t的值;2)若平均每趟快递车辆每分钟的净收益(单位:元),问当发车时间间隔t为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益(结果取整数)     21 .(本题满分12分)已知函数是定义域上的奇函数,且满足1          判断函数在区间上的单调性并用定义证明2          已知证明       22. (本题满分12分)若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称函数具有性质1判断函数是否具有性质,并说明理由;2若函数的定义域为且具有性质,求的值;3已知,函数的定义域为具有性质,若存在实数,使得对任意的,不等式都成立,求实数的取值范围.    东华高级中学  东华松山湖高级中学20222023学年第二学期高一2月考数学答案一、选择题123456789101112DACDBABDBDABCBCBCD二、填空题13.     14.(答案不唯一)   15.     16. 、解答题17.解:1·································································4 2)由题意,若,则···························································5时,,解得 ································································· 6时,…………………… 8 解得…………………………………………………9综上,的取值范围为.····························································1018.解:1因为,且,所以····················································2由此得········································································4.·············································································52,即··································································7由于,得,与此同时,所以由平方关系解得:·····························································9············································································ 1219、(1·····································································2按五个关键点列表:0010-1003010描点并将它们用光滑的曲线连接起来如图1·············································································7       2因为所以的零点个数等价于图象交点的个数,············································8,则······································································9,即时,2个零点;,即时,1个零点;,即时,0个零点.      ·························································1220解:1时,,不满足题意,舍去.···········································1时,,即···································································3解得(舍)或·································································4····································································5所以发车时间间隔为5分钟.·······················································62由题意可得······························································8时,(元),·································································9当且仅当,即时,等号成立,······················································10时,单调递减时,(元)······················································11所以发车时间间隔为6分钟时,净收益最大为140(元).·································1221.解:(1)由为奇函数,可得···················································1,得······································································2所以. 上单调递增,理由如下:························································3,且,则······································································4因为,所以所以上单调递增 ···························································62证法一:由题意,,则有·····················································8因为,所以,即······························································10所以,得证.···································································12            证法二:由(1)知,上单调递增,同理可证上单调递减.因为所以,所以···································································8要证,即证 即证,即证···································································9代入解析式得,即证化简整理得,即证····························································10因为显然成立,······························································11所以原不等式得证,所以.························································ 12 22、解:1对于函数的定义域内任意的,则······································································1结合的图象可知对内任意的是唯一存在的,··········································2所以函数具有性质.2因为,且,所以上是增函数,················································3又函数具有性质,所以,即······················································4因为,所以,又所以,解得,所以·····························································53因为,所以,且在定义域上单调递增,又因为上单调递增,所以在上单调递增,·····························································6又因为具有性质从而,即,所以解得(舍去),·······························································7因为存在实数,使得对任意的,不等式都成立,所以········································································8因为在上单调递增,所以对任意的恒成立.·····························································9所以·····································································11解得      综上可得实数的取值范围是………………12
     

    相关试卷

    2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析):

    这是一份2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析),共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    广东省东莞市东华高级中学2023-2024学年高一上学期12月月考数学试题(Word版附答案):

    这是一份广东省东莞市东华高级中学2023-2024学年高一上学期12月月考数学试题(Word版附答案),共8页。试卷主要包含了单选题,多选题,填空题,解答题,附加题等内容,欢迎下载使用。

    【期中真题】广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题.zip:

    这是一份【期中真题】广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题.zip,文件包含期中真题广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题原卷版docx、期中真题广东省东莞市东华高级中学2022-2023学年高一上学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map