|试卷下载
搜索
    上传资料 赚现金
    新教材2023年高中数学第2章一元二次函数方程和不等式2.3二次函数与一元二次方程不等式第1课时二次函数与一元二次方程不等式素养作业新人教A版必修第一册
    立即下载
    加入资料篮
    新教材2023年高中数学第2章一元二次函数方程和不等式2.3二次函数与一元二次方程不等式第1课时二次函数与一元二次方程不等式素养作业新人教A版必修第一册01
    新教材2023年高中数学第2章一元二次函数方程和不等式2.3二次函数与一元二次方程不等式第1课时二次函数与一元二次方程不等式素养作业新人教A版必修第一册02
    新教材2023年高中数学第2章一元二次函数方程和不等式2.3二次函数与一元二次方程不等式第1课时二次函数与一元二次方程不等式素养作业新人教A版必修第一册03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材2023年高中数学第2章一元二次函数方程和不等式2.3二次函数与一元二次方程不等式第1课时二次函数与一元二次方程不等式素养作业新人教A版必修第一册

    展开
    这是一份新教材2023年高中数学第2章一元二次函数方程和不等式2.3二次函数与一元二次方程不等式第1课时二次函数与一元二次方程不等式素养作业新人教A版必修第一册,共6页。

    第二章 2.3 第1课时

    A 组·素养自测

    一、选择题

    1.不等式6-x-2x2<0的解集是( D )

    A.

    B.

    C.

    D.

    [解析] 不等式变形为2x2x-6>0,又方程2x2x-6=0的两根为x1x2=-2,所以不等式的解集为.故选D.

    2.如果关于x的不等式x2<axb的解集是{x|1<x<3},那么ba等于( B )

    A.-81     B.81

    C.-64   D.64

    [解析] 原不等式可化为x2axb<0,

    其解集是{x|1<x<3},那么由根与系数的关系得

    解得a=4,b=-3,

    所以ba=(-3)4=81.

    3.已知0<a<1,关于x的不等式(xa)>0的解集为( A )

    A.

    B.{x|x>a}

    C.

    D.

    [解析] 因为0<a<1,所以>1,所以a<

    所以不等式的解集为.故选A.

    4.二次方程ax2bxc=0的两根为-2,3,a<0,那么ax2bxc>0的解集为( C )

    A.{x|x>3或x<-2}

    B.{x|x>2或x<-3}

    C.{x|-2<x<3}

    D.{x|-3<x<2}

    [解析] 由已知得a(x+2)(x-3)>0,

    a<0,(x+2)(x-3)<0,-2<x<3.

    所求不等式的解集为{x|-2<x<3}.

    5.若不等式x2kx+1<0的解集为空集,则k的取值范围是( A )

    A.-2≤k≤2         B.k≤-2,或k≥2

    C.-2<k<2   D.k<-2,或k>2

    [解析] 由不等式x2kx+1<0的解集为空集,得对应的二次函数yx2kx+1的图象全部在x轴或x轴上方,则Δ=k2-4×1×1≤0,解得-2≤k≤2.

    6.若关于x的不等式ax2-(a+1)x+1<0(aR)的解集为,则a的取值范围为( B )

    A.a<0,或a>1   B.a>1

    C.0<a<1   D.a<0

    [解析] 不等式ax2-(a+1)x+1<0可化为(ax-1)(x-1)<0,由不等式ax2-(a+1)x+1<0的解集为,得a>0,方程

    (ax-1)(x-1)=0的两根为x1=1,x2,且<1,则a的取值范围为a>1,故选B.

    二、填空题

    7.函数y 的定义域为__{x|-3<x<4}__.

    [解析] 由-x2x+12>0,得x2x-12<0,解得-3<x<4,所以定义域为{x|-3<x<4}.

    8.设函数yx2-4x+6>3,则不等式的解集是__{x|x<1或x>3}__.

    [解析] x2-4x+6>3,x>3或x<1;

    综上,不等式的解集为{x|x<1或x>3}.

    9.已知x=1是不等式k2x2-6kx+8<0的解,则k的取值范围是__{k|2<k<4}__.

    [解析] x=1是不等式k2x2-6kx+8<0的解,把x=1代入不等式,得k2-6k+8<0,解得2<k<4.

    三、解答题

    10.解不等式-1<x2+2x-1≤2.

    [解析] 原不等式可化为

    所以

    如图,结合数轴,可得原不等式的解集为{x|-3≤x<-2或0<x≤1}.

    11.解关于x的不等式ax2x>0.

    [解析] (1)当a=0时,不等式为-x>0,所以x<0,

    (2)当a≠0时,方程ax2x=0的两根为0与

    a>0时,>0,所以x>x<0;

    a<0时,<0,所以<x<0.

    综上,当a>0,不等式的解集为

    a=0时,不等式的解集为{x|x<0};

    a<0时,不等式的解集为.

    B 组·素养提升

    一、选择题

    1.若使有意义的x取值为实数集R,则实数a的取值范围为( D )

    A.{a|-2<a<2}

    B.{a|a<-2或a>2}

    C.{a|a≤-2或a≥2}

    D.{a|-2≤a≤2}

    [解析] 由题意知,x2ax+1≥0的解集为R

    Δ≤0,即a2-4≤0,-2≤a≤2.

    2.若产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( C )

    A.100台   B.120台

    C.150台   D.180台

    [解析] y-25x=-0.1x2-5x+3 000≤0,

    x2+50x-30 000≥0,

    解得x≥150或x≤-200(舍去).

    3.(多选题)下列关于不等式x2-(a+1)xa>0的解集讨论正确的是( CD )

    A.当a=1时,x2-(a+1)xa>0的解集为

    B.当a>1时,x2-(a+1)xa>0的解集为{x|x>a}

    C.当a<1时,x2-(a+1)xa>0的解集为{x|x<ax>1}

    D.无论a取何值时,x2-(a+1)xa>0的解集均不为空集

    [解析] a=1时,原不等式为x2-2x+1=(x-1)2>0,解得x≠1,故A不正确;当a>1时,原不等式为x2-(a+1)xa=(x-1)(xa)>0,解得x<1或x>a,故B不正确;当a<1时,原不等式为x2-(a+1)xa=(x-1)(xa)>0,解得x>1或x<a,故C正确;由二次函数yx2-(a+1)xa,开口向上,所以无论a取何值时,不等式均有解,故D正确;故选CD.

    4.(多选题)若“不等式x2-2x+5≥a2-3a对任意实数x恒成立”为假命题,则实数a可能的取值为( CD )

    A.{a|-1≤a≤4}   B.{a|-1<a<4}

    C.{a|a<-1}   D.{a|a>4}

    [解析] 若命题为真命题,由于x2-2x+5=(x-1)2+4的最小值为4,

    所以x2-2x+5≥a2-3a对任意实数x恒成立,只需a2-3a≤4,解得-1≤a≤4.

    所以题中a可以取的范围为{a|a<-1}{a|a>4}.

    二、填空题

    5.已知函数y的值域为{y|y<2},则a的取值范围为__{a|-6<a<2}__.

    [解析] x2x+1=2

    因为y<2,

    所以x2ax-2<2(x2x+1),

    整理可得x2-(a+2)x+4>0对任意的xR都成立,

    所以Δ<0,即(a+2)2-16<0,

    解得-6<a<2.

    6.若不等式x2x-1<m2x2mx对任意的xR恒成立,则实数m的取值范围为____.

    [解析] 原不等式可化为(1-m2)x2+(1+m)x-1<0.

    当1-m2=0时,m=±1.

    m=-1时,不等式可化为-1<0,显然成立;

    m=1时,不等式可化为2x-1<0,解得x<

    故不等式的解集不是R,不合题意;

    当1-m2≠0时,由不等式恒成立可得

    解得m<-1或m>

    综上可知:实数m的取值范围为.

    7.已知函数yx2axb(abR)的值域为{y|y≥0},若关于x的不等式y<c的解集为{x|m<x<m+6},则实数c的值为__9__.

    [解析] 由题意知yx2axb2b.

    函数yx2axb的值域为{y|y≥0},

    b=0,即b.

    y2.又y<c2<c

    即-<x<-.

    ,得2=6,

    c=9.

    三、解答题

    8.解关于x的不等式ax2-(2+2a)x+4>0.

    [解析] (1)当a=0时,原不等式可化为:x-2<0,即x<2.

    (2)当a<0时,<0<2,所以<x<2.

    (3)当a=1时,原不等式化为(x-2)2>0,x≠2.

    (4)当0<a<1时,2<.所以x>x<2.

    (5)a>1时,2>,所以x>2或x<.

    综上可知,不等式的解集为:a=0时,{x|x<2};a<0时,a=1时,{x|x≠2};0<a<1时,a>1时,.

    9.在x{x|-2≤x≤2},x{x|1≤x≤3}这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.

    已知函数yx2ax+4.

    (1)当a=-2时,求yx2ax+4在x{x|-2≤x≤2}上的值域;

    (2)若________,y≥0,求实数a的取值范围.

    注:如果选择多个条件分别解答,则按第一个解答计分.

    [解析] (1)a=-2时,yx2-2x+4=(x-1)2+3,

    yx2ax+4的对称轴x=1{x|-2≤x≤2},ymaxymin(x)=max{12,4}=12,

    f(x)的值域为{y|3≤y≤12}.

    (2)选择条件的解析:

    a≥4,则函数yx2ax+4在x{x|-2<x<2}上单调递增,

    ymin=8-2a≥0;

    a≥4,a=4.

    若-4<a<4,则f(x)在上单调递减,在上单调递增,

    ymin=4-≥0-4<a<4.

    a≤-4,则函数yx2ax+4在{x|-2<x<2}单调递减,

    ymin=8+2a≥0

    a≤-4,a=-4.综上所述:-4≤a≤4.

    选择条件的解析:

    x{x|1≤x≤3},y≥0,ymax≥0,即max{5+a,13+3a}≥0.

    5+a≥0或13+3a≥0,即a≥-5或a≥-.a≥-5.

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材2023年高中数学第2章一元二次函数方程和不等式2.3二次函数与一元二次方程不等式第1课时二次函数与一元二次方程不等式素养作业新人教A版必修第一册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map