所属成套资源:新教材2023年高中数学新人教A版必修第二册全册素养作业(51份)
人教A版 (2019)必修 第二册10.1 随机事件与概率课后复习题
展开
这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率课后复习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第10章 10.1 10.1.4A组·素养自测一、选择题1.从一箱苹果中任取一个,如果其质量小于200 g的概率为0.2,质量在200~300 g内的概率为0.5,那么质量超过300 g的概率为( B )A.0.2 B.0.3 C.0.7 D.0.8[解析] 质量超过300 g的概率为1-0.2-0.5=0.3.2.从1,2,3,…,30这30个数中任意摸出一个数,则事件“摸出的数是偶数或能被5整除的数”的概率是( B )A. B.C. D.[解析] 解法一:这30个数中“是偶数”的有15个,“能被5整除的数”有6个,这两个事件不互斥,既是偶数又能被5整除的数有3个,所以事件“是偶数或能被5整除的数”包含的样本点是18个,而样本点共有30个,所以所求的概率为=.解法二:设事件A“摸出的数为偶数”,事件B“摸出的数能被5整除”,则P(A)=,P(B)==,P(A∩B)==,所以P(A∪B)=P(A)+P(B)-P(A∩B)=+-=.3.某射手在一次射击中,射中10环,9环,8环的概率分别是0.2,0.3,0.1,则该射手在一次射击中不够8环的概率为( D )A.0.9 B.0.3C.0.6 D.0.4[解析] 设“该射手在一次射击中不够8环”为事件A,则事件A的对立事件是“该射手在一次射击中不小于8环”.∵事件包括射中10环,9环,8环,且这三个事件是互斥的,∴P()=0.2+0.3+0.1=0.6,∴P(A)=1-P()=1-0.6=0.4,即该射手在一次射击中不够8环的概率为0.4.4.甲队和乙队进行足球比赛,两队踢成平局的概率是,乙队获胜的概率是,则甲队不输的概率是( A )A. B.C. D.[解析] 甲队获胜的概率为1--=,∴甲队不输的概率为+=.5.(多选题)在一次随机试验中,三个事件A1,A2,A3发生的概率分别是0.2,0.3,0.5,则下列说法错误的是( ABC )A.A1∪A2与A3是互斥事件,也是对立事件B.A1∪A2∪A3是必然事件C.P(A2∪A3)=0.8D.P(A1∪A2)≤0.5[解析] 三个事件A1、A2、A3不一定是互斥事件,故P(A1∪A2)≤0.5,P(A2∪A3)≤0.8,P(A1∪A2∪A3)≤1,A1∪A2与A3不一定是互斥事件,也不一定是对立事件.二、填空题6.某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率,则当天商店不进货的概率为____.[解析] 商店不进货即日销售量少于2件,显然“日销售量为1件”与“日销售量为0件”不可能同时发生,彼此互斥,分别计算两事件发生的频率,将其视作概率,利用互斥事件的概率加法公式可解.记“当天商品销售量为0件”为事件A,“当天商品销售量为1件”为事件B,“当天商店不进货”为事件C,则P(C)=P(A)+P(B)=+=.7.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级产品的概率为0.03,出现丙级产品的概率为0.01,抽查一件产品,该产品为正品的概率为__0.96__.[解析] 设“抽得正品”为事件A,“抽得乙级产品”为事件B,“抽得丙级产品”为事件C,由题意,P(A)=1-[P(B)+P(C)]=1-(0.03+0.01)=0.96.8.若A,B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=__0.3__.[解析] ∵A,B为互斥事件,∴P(A∪B)=P(A)+P(B),∴P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.三、解答题9.盒子里装有6个红球,4个白球,从中任取3个球.设事件A表示“3个球中有1个红球,2个白球”,事件B表示“3个球中有2个红球,1个白球”.已知P(A)=,P(B)=,求“3个球中既有红球又有白球”的概率.[解析] 记事件C为“3个球中既有红球又有白球”,则它包含事件A“3个球中有1个红球,2个白球”和事件B“3个球中有2个红球,1个白球”,而且事件A与事件B是互斥的,所以P(C)=P(A+B)=P(A)+P(B)=+=.10.某医院一天要派出医生下乡义诊,派出的医生人数及其概率如下表所示:人数012345人及5人以上概率0.10.160.30.20.20.04(1)求派出医生至多2人的概率;(2)求派出医生至少2人的概率.[解析] 设事件A=“不派出医生”,事件B=“派出1名医生”,事件C=“派出2名医生”,事件D=“派出3名医生”,事件E=“派出4名医生”,事件F=“派出5名及5名以上医生”,事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.(1)“派出医生至多2人”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一:“派出医生至少2人”的概率为P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.方法二:“派出医生至少2人”的概率为1-P(A∪B)=1-0.1-0.16=0.74.B组·素养提升一、选择题1.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母按字母顺序恰好是相邻的概率为( B )A. B.C. D.[解析] 试验的样本空间Ω={AB,AC,AD,AE,BC,BD,BE,CD,CE,DE},共有10个样本点,其中事件“这2张卡片上的字母按字母顺序恰好是相邻的”包含4个样本点,故所求概率为=.2.从集合{a,b,c,d,e}的所有子集中任取一个,若这个子集不是集合{a,b,c}的子集的概率是,则该子集恰是集合{a,b,c}的子集的概率是( C )A. B.C. D.[解析] 事件“该子集不是集合{a,b,c}的子集”与事件“该子集是集合{a,b,c}的子集”是对立事件,故该子集恰是{a,b,c}的子集的概率为P=1-=.3.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A.0.3 B.0.4C.0.6 D.0.7[解析] 由题意可知不用现金支付的概率为1-0.45-0.15=0.4.故选B.4.某家庭电话,打进的电话响第一声时被接的概率为,响第二声时被接的概率为,响第三声时被接的概率为,响第四声时被接的概率为;则电话在响前四声内被接的概率为( B )A. B.C. D.[解析] 设“电话响第一声被接”为事件A,“电话响第二声被接”为事件B,“电话响第三声被接”为事件C,“电话响第四声被接”为事件D,则A,B,C,D两两互斥,从而P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=+++=.二、填空题5.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得乒乓球单打冠军的概率为____.[解析] 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以由互斥事件概率的加法公式得,中国队夺得女子乒乓球冠军的概率为+=.6.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__0.72__.[解析] 由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为P=1-0.25-0.03=0.72.三、解答题7.黄种人群中各种血型的人所占的比例见下表:血型ABABO该血型的人所占的比例/%2829835已知同种血型的人可以互相输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?[解析] 对任何一个人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.(1)因为B,O型血可以输给B型血的人,所以“任找一个人,其血可以输给小明”为事件B′+D′,根据互斥事件的概率加法公式,得P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.8.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:(1)P(A)、P(B)、P( C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.[解析] (1)P(A)=,P(B)==,P(C)==.故事件A,B,C的概率分别为,,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵A、B、C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)==.故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”互为对立事件,∴P(N)=1-P(A∪B)=1-=.故1张奖券不中特等奖且不中一等奖的概率为.
相关试卷
这是一份高中数学10.1 随机事件与概率一课一练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学人教A版 (2019)10.1 随机事件与概率复习练习题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率一课一练,共3页。试卷主要包含了6,则 P=,在某联欢会上设有一个抽奖游戏等内容,欢迎下载使用。