2023年甘肃省白银市会宁县中考一模数学试题(含解析)
展开2023年甘肃省白银市会宁县中考一模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.的相反数是( )
A. B.37 C. D.
2.如图,直线相交于点,若,则的度数是( )
A.30° B.40° C.60° D.150°
3.计算:( )
A. B. C. D.
4.在矩形中,、相交于点,若的面积为2,则矩形的面积为( )
A.4 B.6 C.8 D.10
5.如图,是的高,若,,则边的长为( )
A. B. C. D.
6.如图,内接于⊙,连接,则( )
A. B. C. D.
7.如图,已如抛物线开口向上,与轴的一个交点为,对称轴为直线.下列结论错误的是( )
A. B. C. D.
二、填空题
8.计算:______.
9.已知关于x、y的方程的解满足,则a的值为__________________.
10.如果不等式的解集为,那么必须满足______.
11.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E为边的黄金分割点,即.已知为2米,则线段的长为______米.
12.如图,直线与反比例函数的图象交于A,B两点,与x轴交于点C,且,连接OA.已知的面积为12,则k的值为_____________.
13.如图,在菱形中,.若M、N分别是边上的动点,且,作,垂足分别为E、F,则的值为______.
三、解答题
14.计算:.
15.解不等式组:,并写出它的所有整数解.
16.化简:.
17.如图,已知是的一个外角.请用尺规作图法,求作射线,使.(保留作图痕迹,不写作法)
18.如图,△是等边三角形, 在直线上,.求证: .
19.如图,的顶点坐标分别为,,.将平移后得到,且点A的对应点是,点、的对应点分别是、.
(1)点A、之间的距离是______;
(2)请在图中画出.
20.第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.
(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?
(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.
21.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高,如图所示,在某一时刻,他们在阳光下,分别测得该建筑物的影长为米,的影长为米,小明的影长为米,其中、、、、五点在同一直线上,、、三点在同一直线上,且,,已知小明的身高为米,求旗杆的高.
22.在平面直角坐标系中,函数的图象经过点,,且与轴交于点.
(1)求该函数的解析式及点的坐标;
(2)当时,对于的每一个值,函数的值大于函数的值,直接写出的取值范围.
23.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:
组别 | “劳动时间”t/分钟 | 频数 | 组内学生的平均“劳动时间”/分钟 |
A | 8 | 50 | |
B | 16 | 75 | |
C | 40 | 105 | |
D | 36 | 150 |
根据上述信息,解答下列问题:
(1)这100名学生的“劳动时间”的中位数落在__________组;
(2)求这100名学生的平均“劳动时间”;
(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.
24.如图,与等边的边,分别交于点,,是直径,过点作于点.
(1)求证:是的切线;
(2)连接,当是的切线时,求的半径与等边的边长之间的数量关系.
25.现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.
(1)求满足设计要求的抛物线的函数表达式;
(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.
26.问题背景:
一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.
(1)尝试证明:请参照小慧提供的思路,利用图2证明=;
(2)应用拓展:如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.
①若AC=1,AB=2,求DE的长;
②若BC=m,∠AED=,求DE的长(用含m,的式子表示).
参考答案:
1.B
【分析】根据相反数的定义解答即可.
【详解】-37的相反数是37.
故选:B.
【点睛】本题主要考查了相反数,掌握定义是解题的关键.即只有符号不同的两个数,称其中一个是另一个的相反数.
2.A
【分析】根据对顶角相等可得.
【详解】解:∵,与是对顶角,
∴.
故选:A.
【点睛】本题考查了对顶角,解题的关键是熟练掌握对顶角的性质:对顶角相等.
3.C
【分析】利用单项式乘单项式的法则进行计算即可.
【详解】解:.
故选:C.
【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.
4.C
【分析】根据矩形的性质得到OA=OB=OC=OD,推出,即可求出矩形ABCD的面积.
【详解】∵四边形ABCD是矩形,对角线、相交于点
∴AC=BD,且OA=OB=OC=OD
∴
∴矩形的面积为
故选:C
【点睛】此题考查矩形的性质:矩形的对角线相等,且互相平分,由此可以将矩形的面积四等分,由此可以解决问题,熟记矩形的性质定理是解题的关键.
5.D
【分析】先解直角求出AD,再在直角中应用勾股定理即可求出AB.
【详解】解:∵,
∴,
∵直角中,,
∴,
∴直角中,由勾股定理可得,.
故选D.
【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.
6.A
【分析】连接OB,由2∠C=∠AOB,求出∠AOB,再根据OA=OB即可求出∠OAB.
【详解】连接OB,如图,
∵∠C=46°,
∴∠AOB=2∠C=92°,
∴∠OAB+∠OBA=180°-92°=88°,
∵OA=OB,
∴∠OAB=∠OBA,
∴∠OAB=∠OBA=×88°=44°,
故选:A.
【点睛】本题主要考查了圆周角定理,根据圆周角定理的出∠AOB=2∠C=92°是解答本题的关键.
7.C
【分析】根据抛物线的图象,数形结合,逐一解析判断,即可解决问题.
【详解】解:】解:∵抛物线开口向上,对称轴为直线,
∴a>0,b<0;由图象知c<0,
∴abc>0,故A不符合题意;
∵抛物线y=ax2+bx+c与x轴有两个交点,对称轴是直线x=1,与x轴的一个交点是(-1,0),
∴抛物线与x轴的另一个交点是(3,0);
∴即故B不符合题意;
当x=2时,,即,故C符合题意;
∵抛物线对称轴为直线
∴,即,故D不符合题意,
故选:C.
【点睛】该题主要考查了二次函数的图象与系数的关系,抛物线的单调性、对称性及其应用问题;灵活运用有关知识来分析是解题关键.
8.
【分析】先计算,再计算3-5即可得到答案.
【详解】解:.
故答案为:-2.
【点睛】本题主要考查了实数的运算,化简是解答本题的关键.
9.5
【分析】①+②可得x+y=2-a,然后列出关于a的方程求解即可.
【详解】解:,
①+②,得
3x+3y=6-3a,
∴x+y=2-a,
∵,
∴2-a=-3,
∴a=5.
故答案为:5.
【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.
10.
【分析】根据一元一次不等式的解集的定义即可解答.
【详解】解:∵不等式的解集为,
∴,
∴,
故答案为;
【点睛】本题考查了一元一次不等式的解集的定义,解一元一次不等式,理解一元一次不等式的解集的定义是解题的关键.
11./
【分析】根据点E是AB的黄金分割点,可得,代入数值得出答案.
【详解】∵点E是AB的黄金分割点,
∴.
∵AB=2米,
∴米.
故答案为:().
【点睛】本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.
12.8.
【分析】过点A作AE⊥x交x轴于E,过点B作BF⊥x交x轴于F,根据AB=BC,可以得到EF=FC,再根据三角形面积公式即可求解.
【详解】解:如图所示,过点A作AE⊥x轴交x轴于E,过点B作BF⊥x轴交x轴于F
∵AE⊥x轴,BF⊥x轴,AB=BC
∴EF=FC,AE=2BF(中位线定理)
设A点坐标为(,),则B点坐标为(,)
∵OC=OE+EF+FC
∴OC=OE+EF+FC=3a
∴
解得
故答案为:8.
【点睛】本题主要考查了中位线定理,反比例函数的性质和三角形面积公式,解题的关键在于能够熟练运用相关知识进行求解.
13.
【分析】连接AC交BD于点O,过点M作MG//BD交AC于点G,则可得四边形MEOG是矩形,以及,从而得NF=AG,ME=OG,即NR+ME=AO,运用勾股定理求出AO的长即可.
【详解】解:连接AC交BD于点O,如图,
∵四边形ABCD是菱形,
∴AC⊥BD,BO=,AD//BC,
∴
在Rt中,AB=4,BO=,
∵,
∴
过点M作MG//BD交AC于点G,
∴,
∴
又
∴,
∴四边形MEOG是矩形,
∴ME=OG,
又
∴
∴
在和中,
,
∴≌
∴,
∴,
故答案为.
【点睛】本题主要考查了菱形的性质以及全等三角形的判定与性质,正确作出辅助线构造全等三角形是解答本题的关键.
14.
【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解.
【详解】解:
【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键.
15.,整数解为1,2
【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而确定出整数解即可.
【详解】解不等式①,得,
解不等式②,得,
在同一条数轴上表示不等式①②的解集
原不等式组的解集是,
∴整数解为1,2.
【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.
16.1
【分析】将除法转化为乘法,因式分解,约分,根据分式的加减法法则化简即可得出答案.
【详解】解:原式
=1.
【点睛】本题考查了分式的混合运算,考查学生运算能力,掌握运算的结果要化成最简分式或整式是解题的关键.
17.见解析
【分析】作的角平分线即可.
【详解】解:如图,射线即为所求作.
【点睛】本题考查了角平分线、三角形外角的性质、平行线的判定,解题的关键是掌握平行线的判定定理.
18.详见解析
【分析】由等边三角形的性质以及题设条件,可证△ADB≌△AEC,由全等三角形的性质可得.
【详解】证明:∵△是等边三角形,
∴AB=AC,∠ABC=∠ACB,
∴∠ABD=∠ACE,
在△ADB和△AEC中,
∴△ADB≌△AEC(SAS),
∴.
【点睛】本题考查等边三角形的性质、补角的性质、全等三角形的判定和性质,综合性强,但是整体难度不大.
19.(1)4
(2)见解析
【分析】(1)根据点A、的坐标,即可得平移方式,即可求解;
(2)由平移规律可画得.
【详解】(1)解:,,
点A、之间的距离是,
故答案为:;
(2)解:,,
把向右平移4个单位长度得到,
如图所示,即为所求.
【点睛】本题考查了图形的平移,平移规律的探究,根据题意得到平移规律是解决本题的的关键.
20.(1)
(2)
【分析】(1)直接由概率公式求解即可;
(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可.
【详解】(1)解:小明被分配到D.国家冬季两项中心场馆做志愿者的概率是;
(2)解:画树状图如下:
共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,
∴小明和小颖被分配到同一场馆做志愿者的概率为.
【点睛】此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
21.3米
【分析】根据相似求出边的数量关系直接列方程求解即可.
【详解】,
,
,
∽,
,即,
,
同理得∽,
,即,
,
米,
答:旗杆的高是米.
【点睛】此题考查相似三角形的应用,解题关键是通过证明相似得到对应边成比例.
22.(1),
(2)
【分析】(1)利用待定系数法即可求得函数解析式,当时,求出即可求解.
(2)根据题意结合解出不等式即可求解.
【详解】(1)解:将,代入函数解析式得,
,解得,
∴函数的解析式为:,
当时,得,
∴点A的坐标为.
(2)由题意得,
,即,
又由,得,
解得,
∴的取值范围为.
【点睛】本题考查了待定系数法求函数解析式及解不等式,熟练掌握待定系数法求函数解析式及函数的性质是解题的关键.
23.(1)C
(2)112分钟
(3)912人
【分析】(1)根据中位数的定义可知中位数落在C组;
(2)根据加权平均数的公式计算即可;
(3)用样本估计总体即可.
【详解】(1)解:由题意可知,100名学生的“劳动时间”的中位数是第50、51个数,
故本次调查数据的中位数落在C组,
故答案为:C;
(2)解:(分钟),
∴这100名学生的平均“劳动时间”为112分钟;
(3)解:∵(人),
∴估计在该校学生中,“劳动时间”不少于90分钟的有912人.
【点睛】本题考查了统计的知识,解题的关键是仔细读图,并从中找到进一步解题的有关信息,难度不大.
24.(1)见详解;(2)
【分析】(1)连接OD,由题意易得∠A=∠B=60°,则有△AOD为等边三角形,进而可得OD∥BC,然后可得∠CFD=∠FDO=90°,最后问题可求证;
(2)连接DE,由(1)及题意易得,∠FDE=60°,则有△FDE是等边三角形,进而可得DE=DF,然后易得△CDF≌△AED,则有AE=CD=2r,最后问题可求解.
【详解】(1)证明:连接OD,如图所示:
∵等边,
∴∠A=∠B=60°,
∵,
∴△AOD为等边三角形,
∴,
∴OD∥BC,
∵,
∴∠CFD=∠FDO=90°,
∵OD是半径,
∴是的切线;
(2)解:连接DE,如图所示:
由(1)可得是的切线,∠FDO=90°,△AOD为等边三角形,
∴,
∴,
∵是的切线,
∴,
∴△FDE是等边三角形,
∴DE=DF,
∵,是直径,
∴,
∴△CDF≌△AED(AAS),
∴AE=CD=2r,
∴,
∵,
∴.
【点睛】本题主要考查切线的判定定理、切线长定理及等边三角形的判定与性质,熟练掌握切线的判定定理、切线长定理及等边三角形的判定与性质是解题的关键.
25.(1)
(2)
【分析】(1)根据题意,设抛物线的函数表达式为,再代入(0,0),求出a的值即可;
(2)根据题意知,A,B两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而 可解决问题.
【详解】(1)依题意,顶点,
设抛物线的函数表达式为,
将代入,得.解之,得.
∴抛物线的函数表达式为.
(2)令,得.
解之,得.
∴.
【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.
26.(1)详见解析
(2)①DE=;②
【分析】(1)利用AB∥CE,可证得,即,由AD平分∠BAC,可知AC=EC,即可证得结果;
(2)利用(1)中的结论进行求解表示即可.
【详解】(1)解:∵AB∥CE,
∴∠BAD=∠DEC,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠CAD=∠DEC,
∴AC=EC,
∵∠BDA=∠CDE,
∴,
∴,
即,
∴;
(2)①由折叠可知,AD平分∠BAC,CD=DE,
由(1)得,,
∵AC=1,AB=2,
∴,
∴,
解得:CD=,
∴DE= CD=;
②由折叠可知∠AED=∠C=,
∴,
由①可知,
∴,
∴,
即:.
【点睛】本题主要考查的是相似三角形的综合运用,灵活转化比例关系是解题的关键.
2023年甘肃省白银市中考数学三模试卷(含解析): 这是一份2023年甘肃省白银市中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年甘肃省白银市中考数学二模试卷(含解析): 这是一份2023年甘肃省白银市中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年甘肃省白银市会宁县中考一模数学试题(含答案): 这是一份2023年甘肃省白银市会宁县中考一模数学试题(含答案),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。