所属成套资源:【期末满分攻略】2022-2023学年人教版八年级数学下册专题讲学案(原卷版+解析版)
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题02 二次根式运算及运用(原卷版+解析版) 学案 4 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题03 二次根式规律探究(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题04 勾股定理基本应用(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题05 勾股定理逆定理综合应用(原卷版+解析版) 学案 2 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题06 方程思想在勾股定理中应用(原卷版+解析版) 学案 4 次下载
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题01 二次根式基本性质的运用(原卷版+解析版)
展开
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题01 二次根式基本性质的运用(原卷版+解析版),文件包含专题01二次根式基本性质的运用解析版docx、专题01二次根式基本性质的运用原卷版docx等2份学案配套教学资源,其中学案共16页, 欢迎下载使用。
专题01 二次根式基本性质的运用 二次根式的性质运用是本章节考试必考考点。主要在选择题、填空题、解答题中至少必有一处出现。这个专题难度不大,但很重要,必须确保学生们不丢分。【考点刨析】考点1: 二次根式的双重非负性1.二次根式具有双重非负性,即2.几个非负数的和为0,这几个非负数都为0.考点2: 【典例分析】【考点1: 二次根式的双重非负性】【典例1】(2020•浙江自主招生)已知非零实数a,b满足|2a﹣4|+|b+2|++4=2a,则a+b的值【答案】1【解答】解:由题设知a≥3,所以,题设的等式为,于是a=3,b=﹣2,从而a+b=1.故选:a+b=1【变式1-1】(2020秋•水城县校级月考)已知x,y为实数,且满足|x﹣3|+=0,则()2015的值为 .【答案】-1【解答】解:∵|x﹣3|+=0,∴x=3,y=﹣3,则()2015=(﹣1)2015=﹣1.故答案为:﹣1.【变式1-2】(2021春•东莞市期末)已知|x+1|+(y﹣3)2=0,则xy= .【答案】﹣3【解答】解:∵|x+1|+(y﹣3)2=0,|x+1|≥0,(y﹣3)2≥0,∴x+1=0,y﹣3=0,解得x=﹣1,y=3,∴xy=(﹣1)×3=﹣3.故答案为:﹣3.【变式1-3】(2020春•广陵区校级期中)已知a,b分别为等腰三角形的两条边长,且a,b满足b=3+,求此三角形的周长.【答案】8【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=3,∵2+2=4>3,∴2、2、3能组成三角形,∴此三角形的周长为2+2+3=7,∵3+3=6>2,∴2、3、3能组成三角形,∴此三角形的周长为2+3+3=8.【考点2: 】【典例2】(2022秋•南湖区校级期中)已知y=++4,yx的平方根是( )A.16 B.8 C.±4 D.±2【答案】C【解答】解:∵y=++4,∴,解得x=2,∴y=4,∴yx=42=16.∴yx的平方根是±4.故选:C.【变式2-1】(2022秋•邢台期末)已知x,y为实数,且,则xy的值是 .【答案】【解答】解:依题意得:,解得x=3.则y=﹣2,所以xy=3﹣2=.故答案为:.【变式2-2】(2022秋•碑林区校级期末)若y=++4,则x2+y2的平方根是 .【答案】±2【解答】解:∵2﹣x≥0,x﹣2≥0,∴x=2,∴y=4,故x2+y2=22+42=20,∴x2+y2的平方根是:±=±2.故答案为:±2.【典例3】(2022春•东平县校级月考)如果1<a<,那么+|a﹣2|的值是( )A.6+a B.1 C.﹣a D.﹣6﹣a【答案】B【解答】解:∵1<a<,∴a﹣1>0,a﹣2<0,∴原式=+(2﹣a)=a﹣1+2﹣a=1.故选:B.【变式3-1】(2022•南谯区校级模拟)若a<0,则化简|a﹣3|﹣的结果为( )A.3﹣2a B.3 C.﹣3 D.2a﹣3【答案】B【解答】解:∵a<0,∴a﹣3<0,∴|a﹣3|﹣=3﹣a﹣(﹣a)=3﹣a+a=3,故选:B.【变式3-2】(2022春•灵宝市校级月考)实数a,b在数轴上的位置如图所示,化简+﹣的结果是( )A.0 B.﹣2 C.﹣2a D.2b【答案】A【解答】解:由题意得:a<﹣1,b>1,∴a+1<0,b﹣1>0,a﹣b<0,∴原式=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+b﹣1﹣(b﹣a)=﹣a﹣1+b﹣1﹣b+a=0.故选:A.【变式3-3】(2022秋•崇川区校级月考)若2、5、n为三角形的三边长,则化简+的结果为( )A.5 B.2n﹣11 C.11﹣2n D.﹣5【答案】A【解答】解:由三角形三边关系可知:3<n<7,∴3﹣n<0,8﹣n>1,原式=|3﹣n|+|8﹣n|=﹣(3﹣n)+(8﹣n)=﹣3+n+8﹣n=5,故选:A.【夯实基础】1.(2022秋•郸城县期中)计算的结果为( )A.﹣6 B.6 C. D.﹣【答案】B【解答】解:(﹣)2=6,故选:B.2.(2022秋•南关区校级期中)满足=3﹣a的正整数a的所有值的和为( )A.3 B.6 C.10 D.15【答案】B【解答】解:∵=3﹣a,∴3﹣a≥0,解得a≤3,则正整数a的值有1、2、3三个,∴1+2+3=6.故选:B.3.(2021秋•沭阳县校级期末)若=2﹣x成立,则x的取值范围是( )A.x≤2 B.x≥2 C.0≤x≤2 D.任意实数【答案】A【解答】解:∵=|x﹣2|=2﹣x,∴x﹣2≤0,∴x≤2,故选:A.4.(2022春•广阳区校级期末)当1<a<2时,代数式+的值是( )A.1 B.﹣1 C.2a﹣3 D.3﹣2a【答案】A【解答】解:∵1<a<2,∴a﹣2<0,a﹣1>0,∴原式=|a﹣2|+|a﹣1|=2﹣a+a﹣1=1.故选:A.5.(2022秋•卧龙区校级月考)若+b﹣3=0,则b的取值范围是( )A.b>3 B.b<3 C.b≥3 D.b≤3【答案】D【解答】解:∵+b﹣3=0,即|3﹣b|=3﹣b,∴3﹣b≥0,即b≤3,故选:D.6.(2022秋•禅城区校级月考)实数a、b在轴上的位置如图所示,且|a|>|b|,则化简的结果为( )A.2a+b B.﹣2a+b C.b D.2a﹣b【答案】B【解答】解:∵实数a、b在轴上的位置可知,a<0<b,且|a|>|b|,∴a﹣b<0,∴原式=﹣a+b﹣a=b﹣2a,故选:B.7.(2022秋•北碚区校级期中)实数a在数轴上的位置如图所示,则化简结果为( )A.7 B.﹣7 C.2a﹣15 D.无法确定【答案】A【解答】解:∵由图可知:4<a<10,∴a﹣4>0,a﹣11<0,∴原式=+=a﹣4+11﹣a=7.故选:A.8.(2021春•宾阳县期中)实数a在数轴对应点的位置如图所示,则﹣|3﹣a|=( )A.5 B.﹣5 C.﹣1 D.2a﹣5【答案】C【解答】解:由图知:1<a<2,∴a﹣2<0,3﹣a>0,原式=|a﹣2|﹣|3﹣a|=2﹣a﹣(3﹣a)=2﹣a﹣3+a=﹣1.故选:C.9.(2022秋•安岳县期末)已知实数a在数轴上的位置如图所示,则化简:的结果为( )A.2 B.﹣2 C.2a﹣6 D.﹣2a+6【答案】A【解答】解:根据实数a在数轴上的位置得知:2<a<4,即:﹣2>0,a﹣4<0,故原式=a﹣2+4﹣a=2.故选:A.10.(2021春•海淀区校级期中)已知+|y﹣3|=0,则xy= .【答案】﹣3【解答】解:由题意可知:x+1=0,y﹣3=0,∴x=﹣1,y=3,∴xy=﹣1×3=﹣3,故答案为:﹣3.11.(2020•中山市一模)若x,y为实数,且|x+1|+=0,则(xy)2020的值是 .【答案】1【解答】解:∵x,y为实数,且|x+1|+=0,∴x+1=0,y﹣1=0,解得:x=﹣1,y=1,则(xy)2020=1.故答案为:1.12.(2022•南京模拟)实数a在数轴上的位置如图所示,则化简后为( )A.9 B.﹣9 C.2a﹣15 D.2a﹣9【答案】C【解答】解:由数轴得5<a<10,所以原式=|a﹣3|﹣|a﹣12|=a﹣3+a﹣12=2a﹣15.故选:C.13.(2022秋•丰泽区校级期末)已知x,y都是实数,且y=++4,则y= .【答案】4【解答】解:∵y=+4,∴,解得x=3,∴y=4,故答案为:4.14.(2022秋•平谷区期末)实数m在数轴上的位置如图所示,则化简的结果为 .【答案】1【解答】解:由数轴得:0<m<1,∴m﹣1<0,∴=﹣(m﹣1)+m=﹣m+1+m=1.故答案为:1.15.(2022秋•丰泽区校级期末)当a>3时,化简:|a﹣2|﹣= .【答案】1【解答】解:∵a>3,∴a﹣2>0,a﹣3>0,∴原式=a﹣2﹣(a﹣3)=a﹣2﹣a+3=1.故答案为1.16.(2022秋•渝中区校级期中)如图,实数a在数轴上的位置如图所示,则化简后为 .【答案】7【解答】解:∵5<a<10,∴a﹣4>0,a﹣11<0,∴原式=|a﹣4|+|a﹣11|=a﹣4+11﹣a=7.故答案为:7.17.若x,y是实数,且y=++3,求3的值.【解答】解:由题意得,4x﹣1≥0,1﹣4x≥0,解得,x=,则y=3,则3=3×=.18.(2022春•澄迈县期末)已知﹣1<a<3,化简.【解答】解:∵﹣1<a<3,∴a+1>0,a﹣4<0,∴原式=a+1﹣(4﹣a)=2a﹣3.【能力提升】19.(2022秋•如东县期末)x,y为实数,且,化简:= .【答案】﹣1【解答】解:∵x﹣1≥0,1﹣x≥0,∴x≥1,x≤1,∴x=1,又∵y<++3,∴y<3,∴|y﹣3|﹣=3﹣y﹣(4﹣y)=﹣1.故答案为﹣1.21.(2022秋•兴庆区校级月考)实数a在数轴上对应的点的位置如图所示,则化简﹣|c﹣a|+|b﹣c|= .【答案】0【解答】解:∵c<b<0<a,∴b﹣a<0,c﹣a<0,b﹣c>0,∴原式=|b﹣a|﹣|c﹣a|+|b﹣c|=a﹣b﹣(a﹣c)+b﹣c=a﹣c﹣a+c=0.故答案为:0.22.(2022春•梁山县期中)已知实数a,b,c在数轴上的位置如图所示,化简代数式:﹣|a+c|+﹣|﹣b|.【解答】解:由数轴可知:a<c<0<b<﹣a,∴a+c<0,c﹣b<0,﹣b<0,∴原式=2+(a+c)+|c﹣b|﹣b=2+a+c﹣c+b﹣b=2+a.
相关学案
这是一份【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题02 二次根式运算及运用,文件包含期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题02二次根式运算及运用解析版docx、期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题02二次根式运算及运用原卷版docx等2份学案配套教学资源,其中学案共32页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题01 二次根式基本性质的运用,文件包含期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题01二次根式基本性质的运用解析版docx、期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题01二次根式基本性质的运用原卷版docx等2份学案配套教学资源,其中学案共17页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题25 一次函数图形性质与规律综合应用(原卷版+解析版),文件包含专题25一次函数图形性质与规律综合应用解析版docx、专题25一次函数图形性质与规律综合应用原卷版docx等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。