所属成套资源:【期末满分攻略】2022-2023学年人教版八年级数学下册专题讲学案(原卷版+解析版)
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题04 勾股定理基本应用(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题05 勾股定理逆定理综合应用(原卷版+解析版) 学案 2 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题07 直角三角形中的锐角平分线模型(原卷版+解析版) 学案 2 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题08 勾股定理之图形折叠模型综合应用(4大类型)(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题09 勾股定理之赵爽弦图模型综合应用(2大类型)(原卷版+解析版) 学案 3 次下载
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题06 方程思想在勾股定理中应用(原卷版+解析版)
展开
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题06 方程思想在勾股定理中应用(原卷版+解析版),文件包含专题06方程思想在勾股定理中应用解析版docx、专题06方程思想在勾股定理中应用原卷版docx等2份学案配套教学资源,其中学案共23页, 欢迎下载使用。
专题06 方程思想在勾股定理中应用 勾股定理是几何中最重要的定理之一, 它也是直角三角形的一条重要性质.同时由勾股定理及其逆定理,能够把形的特征转化成数量关系,它把形与数密切地联系起来,因此,它在理论上也有重要地位.方程思想是初中数学中一种基本的数学思想方法.方程可以清晰的反应已知量和未知量之间的关系,架起沟通已知量和未知量的桥梁.本节课为后续进一步学习运用方程思想解决问题起着铺垫作用。【典例分析】【典例1】(2021秋•峨边县期末)有一块直角三角形纸片,两直角边分别为:AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.【解答】解:∵△ACD与△AED关于AD成轴对称,∴AC=AE=6cm,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82 =102,∴AB=10,∴BE=AB﹣AE=10﹣6=4,设CD=DE=xcm,则DB=BC﹣CD=8﹣x,在Rt△DEB中,由勾股定理,得x2+42=(8﹣x)2,解得x=3,即CD=3cm.【变式1-1】(2022秋•新泰市期末)如图所示,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,你能求出CD的长吗?【解答】解:在Rt三角形中,由勾股定理可知:AB===10.由折叠的性质可知:DC=DE,AC=AE,∠DEA=∠C.∴BE=4,∠DEB=90°.设DC=x,则BD=8﹣x.在Rt△BDE中,由勾股定理得:BE2+ED2=BD2,即42+x2=(8﹣x)2.解得:x=3.∴CD=3.【变式1-2】(2021秋•景德镇期中)如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上.(1)试判断△ABC的形状,并说明理由;(2)求折痕AD的长.【解答】解:(1)△ABC是直角三角形;(1分)∵AC2+BC2=52+122=169=AB2,(2分)∴∠C=90°;∴△ABC是直角三角形.(1分)(2)设折叠后点C与AB上的点E重合.设CD=x,则DE=x,AE=5,BE=8,BD=12﹣x;∵∠AED=∠C=90°,∴在Rt△EBD中,x2+82=(12﹣x)2,解得:x=,(3分)∴AD==.(3分)【典例2】如图,在锐角△ABC中,已知AB=15,BC=14,AC=13,AD⊥BC于D点,求AD的长.【答案】AD=12【解答】解:设BD=x,则CD=14﹣x,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵△ADB与△ACD均为直角三角形,∴AD2=AB2﹣BD2=AC2﹣CD2,即152﹣x2=132﹣(14﹣x)2,解得x=9,∴BD=9,∴AD===12.【变式2-1】(2021秋•象山县期中)如图,在△ABC中,AB=14,BC=15,AC=13,AD⊥BC.(1)求BD的长.(2)求△ABC的面积.【答案】(1) BD的长是 (2)84【解答】解:(1)设BD=x,则CD=15﹣x.在Rt△ABD中,AD2=AB2﹣BD2=142﹣x2,在Rt△ACD中,AD2=AC2﹣CD2=132﹣(15﹣x)2,由勾股定理得到:142﹣x2=132﹣(15﹣x)2.解得x=.即BD的长是;(2)由(1)知,BD=.Rt△ABD中,AD2=AB2﹣BD2=142﹣x2,即AD2=142﹣()2=()2,∴AD=,∴S△ABC=BC•AD=×15×=84.【变2-2】已知:如图,△ABC中,AB=10,BC=9,AC=17,求BC边上的高.【答案】8【解答】解:延长CB,作AD⊥BC,交CB的延长线于点D,设AD=x,BD=y,在直角△ADB中,AB2=x2+y2,在直角△ADC中,AC2=x2+(y+BC)2,解方程得 y=6,x=8,即AD=8,∵AD即BC边上的高,∴BC边上的高为8.答:BC边上的高为8. 【典例3】(2021秋•广南县期末)如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB是4米.求竹子折断处与根部的距离CB.【解答】解:由题意知BC+AC=8,∠CBA=90°,∴设BC长为x米,则AC长为(8﹣x)米,∴在Rt△CBA中,有BC2+AB2=AC2,即:x2+16=(8﹣x)2,解得x=3,∴竹子折断处C与根部的距离CB为3米.【变式3-1】(2021春•安徽月考)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽,问绳索长是多少?根据题意求出绳索长.【解答】解:设绳索长为x尺,根据题意得:x2﹣(x﹣4)2=82,解得:x=10,答:绳索长为10尺.【变式3-2】(2022春•十堰月考)《九章算术》是我国古代最重要的数学著作之一其中记载了这样一个问题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?”译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少尺?【解答】解:设绳索AC的长为x尺,则木柱AB的长为(x﹣3)尺,在Rt△ABC中,由勾股定理得,AC2﹣AB2=BC2,即x2﹣(x﹣3)2=82,解得x=,答:绳索长为尺【夯实基础】1.(2022秋•路北区校级期末)如图,BD是△ABC的角平分线,DE是BC的垂直平分线,∠A=90°,AD=4,则CD=( )A.8 B.7 C.6 D.5【答案】A【解答】解:∵BD是△ABC的角平分线,∴∠CBD=∠DBA,∵DE是BC的垂直平分线,∴CD=BD,∴∠C=∠CBD,∴∠C=∠CBD=∠DBA,∵∠A=90°,∴∠C=∠CBD=∠DBA=90°=30°,∵AD=4,∴BD=2AD=8,∴CD=BD=8,故选A.2.(2021秋•禅城区期末)如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是( )A.26尺 B.24尺 C.17尺 D.15尺【答案】C【解答】解:设水池的深度为x尺,由题意得:x2+82=(x+2)2,解得:x=15,所以x+2=17.即:这个芦苇的高度是17尺.故选:C.3.(2020秋•槐荫区期末)《九章算术》是中国古代的数学代表作,书中记载:今有开门去阃(读kun,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),从点O处推开双门,双门间隙CD的长度为2寸,点C和点D到门槛AB的距离都为1尺(1尺=10寸),则AB的长是( )A.104寸 B.101寸 C.52寸 D.50.5寸【答案】B【解答】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:B. 4.(2021秋•洛江区期末)如图,在△ABC中,AB=10cm,AC=6cm,BC=8cm,若将AC沿AE折叠,使得点C与AB上的点D重合,则△AEB的面积为 cm2.【答案】15【解答】解:∵AC2+BC2=62+82=100,AB2=100,∴AC2+BC2=AB2,∴△ABC是直角三角形.∵将AC沿AE折叠,使得点C与AB上的点D重合,∴EC=DE,AC=AD=6cm,∠ADE=∠C=∠BDE=90°,∴DB=4cm,设EC=DE=xcm,在Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.∴BE=BC﹣EC=8﹣3=5cm,∴S△ABE=×BE×AC=×5×6=15(cm2).故答案为:15.5.(2021秋•兴文县校级期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为 .【答案】10【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.6.(2021秋•靖江市校级期中)《九章算术》中有一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,则折断处离地面的高度为 尺.【答案】4.55【解答】解:设折断处离地面的高度为x尺,则折断的长度为(10﹣x)尺,由勾股定理得x2+32=(10﹣x)2,解得x=4.55,∴折断处离地面的高度为4.55尺,故答案为:4.55.7.(2022春•谷城县期末)如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边中点,它的顶端恰好到达池边的水面,求这根芦苇的长度是多少尺?【解答】解:设这根芦苇的长度为x尺,水深为(x﹣1)尺,根据勾股定理得:52+(x﹣1)2=x2,解得:x=13,答:这根芦苇的长度是13尺.8.(秋•东台市期中)如图,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,求(1)FC的长.(2)EF的长.【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC=10cm,∠B=90°,∵根据折叠得出AF=AD=10cm,在RtABF中,由勾股定理得:BF==6cm∴FC=BC﹣BF=10﹣6=4cm(2)∵四边形ABCD是矩形,∴AB=CD=8cm,∠D=90°,∵根据折叠得出DE=EF,设EC=xcm,则DE=(8﹣x)cm,在Rt△ECF中,CE2+CF2=EF2,x2+(10﹣6)2=(8﹣x)2,解得:x=3,即EC=3cm.∴DE=EF=5cm9.(2020秋•越城区期中)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长【答案】(1) BC=6 (2) AE=4 (3)BD=3【解答】解:(1)∵∠C=90°,AB=10,AC=8,∴BC==6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB﹣BE=10﹣6=4;(3)设CD=DE=x,则AD=8﹣x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8﹣x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD==3.10.(秋•溧水区期末)如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.【答案】(1)PB=PC (2)AB=10【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB=PC,PB=5,∴PC=5.∵PH=3,∠CHB=90°,∴CH=4.设AB=x,则AH=x﹣4.在Rt△ABH中,∵AH 2+BH 2=AB 2,∴(x﹣4) 2+(5+3) 2=x 2.∴x=10.即AB=10.11.(2021秋•法库县期末)笔直的河流一侧有一旅游地C,河边有两个漂流点A,B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B在同一直线上),并新修一条路CH,测得BC=5千米,CH=4千米,BH=3千米.(1)判断△BCH的形状,并说明理由;(2)求原路线AC的长.【答案】(1) △HBC是直角三角形且∠CHB=90° (2)AC的长为千米【解答】解:(1)△BCH是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB﹣BH=(x﹣3)千米,在Rt△ACH中,由已知得AC=x,AH=x﹣3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x﹣3)2+42解这个方程,得x=,答:原来的路线AC的长为千米.12.(2021秋•济阳区期末)如图,小刚想知道学校旗杆的高度,他发现旗杆顶端A处的绳子垂到地面B处后还多2米.当他把绳子拉直并使下端刚好接触到地面C处,发现绳子下端到旗杆下端的距离为6米,请你帮小刚求出旗杆的高度AB长.【答案】8米【解答】解:设旗杆的高度为x米,则绳子的长度为(x+2)米,根据勾股定理可得:x2+62=(x+2)2,解得,x=8.答:旗杆的高度为8米.13.(2021秋•江阴市期末)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.【答案】14.5尺【解答】解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度为14.5尺.
相关学案
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题19 正方形中“半角”模型(原卷版+解析版),文件包含专题19正方形中“半角”模型解析版docx、专题19正方形中“半角”模型原卷版docx等2份学案配套教学资源,其中学案共41页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题13 勾股定理之蚂蚁行程模型综合应用(3大类型)(原卷版+解析版),文件包含专题13勾股定理之蚂蚁行程模型综合应用3大类型解析版docx、专题13勾股定理之蚂蚁行程模型综合应用3大类型原卷版docx等2份学案配套教学资源,其中学案共19页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题11 勾股定理之风吹荷花模型综合应用(2大类型)(原卷版+解析版),文件包含专题11勾股定理之风吹荷花模型综合应用2大类型解析版docx、专题11勾股定理之风吹荷花模型综合应用2大类型原卷版docx等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。